Advertisement

Mineral Nutrition: Salinity

  • Ulrich Lüttge
Part of the Progress in Botany / Fortschritte der Botanik book series (BOTANY, volume 45)

Abstract

In 1928 the late Otto STOCKER referred to deserts as “dry oceans” having huge reservoirs of soluble salts. Although aridity is not necessarily identical with salinity, in many deserts the salt factor may be of larger ecological significance than the water factor (ALBERT 1982). For this very reason salinity research on higher plants has been gaining recently considerably increasing support. In the arid zone, not only in natural environments or in little-developed agriculture but also and particularly in highly developed irrigation systems, salinity is beginning to be recognized as a major factor limiting productivity. This has triggered vigorous international conference and publication activities. Breeders seem to agree that increasing basic knowledge is essential. However, physiologists may have to address themselves more to the elucidation of basic mechanisms, preferentially on the molecular level, than to accumulate phenomenological information on plant behavior. Known molecular mechanisms (“gene products”) can provide distinct starting points for breeding efforts; known phenomena do not significantly change the situation of the breeder compared with his traditional selection procedures. Modern techniques like tissue and cell culture, protoplast isolation and fractionation, including isolation of vacuoles, allowing studies of metabolite and enzyme compartmentation and enzyme properties, are adopted too reluctantly by plant physiologists working on the mechanisms of plant responses to salinity. This has slowed down progress, but it must be expected that it will change due to demand and support from practical requirements. The recent literature on salt inclusion and exclusion and salt elimination is reviewed here and confronted with modern developments in transport physiology that may determine progress in the future.

Keywords

Salt Tolerance Mineral Nutrition Salt Gland Tolerant Form Benzene Sulphonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Admon, A., Jacoby, B., Goldschmidt, E.E.: Plant Sci. Lett. 22, 89–96 (1981).Google Scholar
  2. Albert, R.: Halophyten, 33–215. In: Pflanzenokologie und Mineralstoffwechsel, ed. H. Kinzel. Stuttgart: Ulmer 1982.Google Scholar
  3. Alibert, G., Boudet, A.: Physiol. Veg. 20, 289–302 (1982).Google Scholar
  4. Atkinson, M.R., Findlay, G.P., Hope, A.B., Pitman, M.G., Saddler, H.D.W., West, K.R.: Aust. J. Biol. Sci. 20, 589–599 (1967).Google Scholar
  5. Auffket, C.A., Hanke, D.E.: Biochem. Biophys. Acta 648, 186–191 (1981).Google Scholar
  6. Balke, N.E., Hodges, T.K.: Plant Physiol. 53, 48–52 (1979a)Google Scholar
  7. Alke, N.E., Hodges, T.K.: ibid. 63, 53–56 (1979b).Google Scholar
  8. Baumeister, W., Ziffus, G.: Z. Pflanzenphysiol. 102, 273–278 (1981).Google Scholar
  9. Beffagna, N., Marre, E., Cocucci, S.M.: Planta 146, 387–391 (1979).Google Scholar
  10. Behl, R., Jeschke, W.D.: J. Exp. Bot. 33, 584–600 (1982).Google Scholar
  11. Boller, T.: Physiol. Veg. 20, 247–257 (1982).Google Scholar
  12. Boudet, A.M., Canut, H., Alibert, G.: Plant Physiol. 68, 1354–1358 (1981).PubMedGoogle Scholar
  13. Briskin, D.P., Leonard, R.T.: Plant Physiol. 70, 1459–1464 (1982a)PubMedGoogle Scholar
  14. Briskin, D.P., Leonard, R.T.: Proc. Natl. Acad. Sci. USA 79, 6922–6926 (1982b).Google Scholar
  15. Briskin, D.P., Poole, R.J.: Plant Physiol. 71, 507–512 (1983).PubMedGoogle Scholar
  16. Chen, Y., Zahavi, E., Barak, P., Umiel, N.: Z. Pflanzenphysiol. 98, 141–153 (1980).Google Scholar
  17. Churchill, K.A., Sze, H.: Plant Physiol. 71, 610–617 (1983).PubMedGoogle Scholar
  18. Colombo, R., Bonetti, A., Lado, P.: Plant Cell Environ. 2, 281–285 (1979).Google Scholar
  19. Coughlan, S.J., Wynjones, R.G.: Planta 154, 6–17 (1982).Google Scholar
  20. Cram, W.J.: Aust. J. Plant Physiol. 7, 41–49 (1980a)Google Scholar
  21. Cram, W.J.: ibid. 7, 237–239 (1980b).Google Scholar
  22. Croughan, T.P., Stavarek, S.J., Rains, D.W.: Crop Sci. 18, 959–963 (1978).Google Scholar
  23. D’auzac, J., Cretin, H., Marin, B., Lioret, C.: Physiol. Veg. 20, 311–331 (1982).Google Scholar
  24. Dix, P.J., Pearce, R.S.: Z. Pflanzenphysiol. 102, 243–248 (1981).Google Scholar
  25. Dix, P.J., Street, H.E.: Plant Sci. Lett. 5, 231–237 (1975).Google Scholar
  26. Doll, S., Hauer, R.: Planta 152, 153–158 (1981).Google Scholar
  27. DuPont, F.M., Leonard, R.T.: Plant Physiol. 65, 931–938 (1980).PubMedGoogle Scholar
  28. DuPont, F.M., Burke, L.L., Spanswick, R.M.: Plant Physiol. 59–63 (1981).Google Scholar
  29. DuPont, F.M., Bennett, A.B., Spanswick, R.M.: Plant Physiol. 70, 1115–1119 (. 1982 ).PubMedGoogle Scholar
  30. Epstein, E., Norlyn, J.D., Rush, D.W., Kingsbury, R.W., Kelley, D.B., Cunningham, G.A., Wrona, A.F.: Science 240, 399–404 (1980).Google Scholar
  31. Gale, J., Boll, W.G.: Can. J. Bot. 57, 777–782 (1979).Google Scholar
  32. Gallagher, S.R., Leonard, R.T.: Plant Physiol. 70, 1335–1340 (1982).PubMedGoogle Scholar
  33. Glass, A.D.M.: Plant Physiol. 58, 33–37 (1976).PubMedGoogle Scholar
  34. Glass, A.D.M., Siddiqi, M.Y.: Plant Cell Environ. 5, 385–393 (1982).Google Scholar
  35. Goldner, R., Umiel, N., Chen, Y.: Z. Pflanzenphysiol. 85, 307–317 (1977).Google Scholar
  36. Goller, M., Hampp, R., Ziegler, H.: Planta 15, 255–263 (1982)Google Scholar
  37. Gronwald, J.W., Leonard, R.T.: Plant Physiol. 70, 1391–1395 (1982)PubMedGoogle Scholar
  38. Guy, M., Reinhold, L., Michaeli, D.: Plant Physiol. 64, 61–64 (1979).PubMedGoogle Scholar
  39. Hager, A., Helmle, M.: Z. Naturforsch. 36c, 997–1008 (1981).Google Scholar
  40. Hager, A., Hermsdorf, P.: Z. Naturforsch. 36c, 1009–1012 (1981)Google Scholar
  41. Hager, A., Frenzel, R., Laible, D.: Z. Naturforsch. 35c, 783–793 (1980).Google Scholar
  42. Hampp, R.: Planta 150, 291–298 (1980).Google Scholar
  43. Hampp, R., Goller, M., Ziegler, H.: Plant Physiol. 69, 448–455 (1982).PubMedGoogle Scholar
  44. Hansen, D.J., Dayanandan, P., Kaufmann, P.B., Brotherson, J.D.: Am. J. Bot. 63, 635–650 (1976)Google Scholar
  45. Hanson, A.D., Nelsen, C.E.: Plant Physiol. 62, 305–312 (1978)PubMedGoogle Scholar
  46. Hanson, A.D., Rhodes, D.: Plant Physiol. 71, 692–700 (1983).PubMedGoogle Scholar
  47. Hanson, A.D., Scott, N.A.: Plant Physiol. 66, 342–348 (1980).PubMedGoogle Scholar
  48. Hanson, A.D., Wyse, R.: Plant Physiol. 70, 1191–1198 (1982).PubMedGoogle Scholar
  49. Hanson, J.B.: Plant Physiol. 62, 402–405 (1978).PubMedGoogle Scholar
  50. Hedenström, H. von, Breckle, S.W.: Z. Pflanzenphysiol. 74, 183–185 (1974).Google Scholar
  51. Heyser, J.W., Nabors, M.W.: Plant Physiol. 17, 720–727 (1981a)Google Scholar
  52. Heyser, J.W., Nabors, M.W.: ibid. 68, 1454–1459 (1981b).PubMedGoogle Scholar
  53. Hill, A.E., Hill, B.S.: Elimination processes by glands: Mineral ions 225–243. In: Transport in Plants, II B, Tissues and Organs, eds. U. Luttge, M.G. Pitman. Encyclopedia of Plant Physiology, N.S., Vol. 2. Berlin, Heidelberg, New York: Springer 1976.Google Scholar
  54. Hill, B.S., Hill, A.E. J. Membr. Biol. 12, 145–158 (1973).Google Scholar
  55. Hitz, W.D., Rhodes, D., Hanson, A.D.: Plant Physiol. 68, 814–822 (1981).PubMedGoogle Scholar
  56. Hodges, T.K.: ATPases associated with membranes of plant cells, 260–283. In: Transport in Plants, II A, Cells, eds. U. Ltittge, M.G. Pitaman. Encyclopedia of Plant Physiology, N.S., Vol. 2. Berlin, Heidelberg, New York: Springer 1976.Google Scholar
  57. Jacoby, B., Ratner, A.: Mechanism of sodium exclusion in bean and corn plants - a reevaluation, 175–184. In: Plant Analysis and Fertiliser Problems. Hannover: German Society of Plant Nutrition 1974.Google Scholar
  58. Jennings, D.H.: New Phytol. 67, 899–911 (1968).Google Scholar
  59. Jeschke, W.D.: Planta 94, 240–245 (1970)Google Scholar
  60. Jeschke, W.D.: ibid. 96, 73–90 (1972)Google Scholar
  61. Jeschke, W.D.: Z. Pflanzenphysiol. 84, 247–264 (1977a)Google Scholar
  62. Jeschke, W.D.: J. Exp. Bot. 28, 1289–1305 (1977b)Google Scholar
  63. Jeschke, W.D.: Z. Pf lanzenphysiol. 94, 325–330 (1979)Google Scholar
  64. Jeschke, W.D.: J. Exp. Bot. 33, 601–618 (1982a)Google Scholar
  65. Jeschke, W.D.: Cation fluxes in excised and intact roots in relation to specific and varietal differences, 57–69. In: Genetic Specificity and Mineral Nutrition of Plants, ed. M.R. Saric. Beograd: Serbian Academy of Sciences and Art, Scientific Assemblies, Vol. VIII 1982bGoogle Scholar
  66. Jeschke, W.D.: K+-Na1 exchange at cellular membranes, intracellular compartmentation of cations and salt tolerance (in preparation). In: Salinity tolerance in plants: Strategies for crop improvement, eds. R.C. Staples, G.H. Toenniessen. New York: Wiley 1983.Google Scholar
  67. Jeschke, W.D.: Jeschke, W.D., Jambor, W.: J. Exp. Bot. 32, 1257–1272 (1981).Google Scholar
  68. Jeschke, W.D., Nassery, H.: Physiol. Plant 52, 217–224 (1981).Google Scholar
  69. Jeschke, W.D., Stelter, W.: Planta 114, 251–258 (1973).Google Scholar
  70. Jung, K.-D., Ltittge, U.: Ann. Bot. 45, 339–349 (1980).Google Scholar
  71. Katz, A., Tal, M.: Z. Pflanzenphysiol. 98, 429–435 (1980).Google Scholar
  72. Kochba, J., Spiegel-Roy, P., Saad, S., Neumann, H.: Tissue culture studies with citrus. 2. Application of citrus tissue cultures for selection of mutants, 229–230. In: Production of Natural Compounds by Cell Culture Methods, eds. A.W. Alferman, E. Reinhard. Proc. Int. Symp. Plant Cell Culture 1978.Google Scholar
  73. Kochba, J., Ben-Hayyim, G., Spiegel-Roy, P., Saad, S., Neumann, H.: Z. Pflanzenphysiol. 106, 111–118 (1982).Google Scholar
  74. Komor, E., Thom, M., Maretzki, A.: Plant Physiol. 69, 1326–1330 (1982a)PubMedGoogle Scholar
  75. Komor, E., Thom, M., Maretzki, A.: Physiol. Veg. 20, 277–287 (1982b).Google Scholar
  76. Kramer, D., Lauchli, A., Yeo, A.R., Gullasch, J.: Ann. Bot. 41, 1031–1040 (1977).Google Scholar
  77. Kubowicz, B.D., Vanderhoef, L.N., Hanson, J.B.: Plant Physiol. 69, 187–191 (1982).PubMedGoogle Scholar
  78. Kylin, A., Hansson, G.: Proceedings of the 8th Colloquium of the International Potash Institute, pp. 64-68. Bern: Int. Potash Institute 1971.Google Scholar
  79. Lauchli, A.: Symplasmic transport and ion release to the xylem, 101–112. In: Transport and Transfer Processes in Plants, eds. I.F. Wardlaw, J.B. Passioura. New York, London: Academic Press 1976Google Scholar
  80. Lauchli, A.: Ber. Dtsch. Bot. Ges. 92, 87–94 (1979).Google Scholar
  81. Lauchli, A., Gullasch, J.: Microsc. Acta Suppl. 2, 201–204 (1978).Google Scholar
  82. Lauchli, A., Wieneke, J.: Z. Pflanzenernahr. Bodenk. 142, 3–13 (1979).Google Scholar
  83. Leigh, R.A., Branton, D.: Plant Physiol. 58, 656–662 (1976).PubMedGoogle Scholar
  84. Leigh, R.A., Walker, R.R.: Planta 150, 222–229 (1980).Google Scholar
  85. Lilley, R. Mc C., Stitt, M., Mader, G., Heldt, H.W.: Plant Physiol. 70, 965–970 (1982).PubMedGoogle Scholar
  86. Lin, W.: Plant Physiol. 63, 952–955 (1979)PubMedGoogle Scholar
  87. Lin, W.: ibid. 66, 550–554 (1980)PubMedGoogle Scholar
  88. Lin, W.: ibid. 68, 435–438 (1981).PubMedGoogle Scholar
  89. Lin, W., Wagner, G.J., Siegelman, H.W., Hind, G.: Biochem. Biophys. Acta 465, 110–117 (1977)Google Scholar
  90. Lindberg, S., Hansson, G., Kylin, A.: Physiol. Plant arum 32, 103–107 (1974)Google Scholar
  91. Ltittge, U.: Salt glands, 335–376. In: Ion Transport in Plant Cells and Tissues, eds. D.A. Baker, J.L. Hall. Amsterdam: North-Holland 1975Google Scholar
  92. Ltittge, U.: Transport functions of leaves, 413–448. In: The Growth and Functioning of Leaves eds. J.E. Dale, F.L. Milthorpe. Cambridge: Cambridge University Press 1983.Google Scholar
  93. Ltittge, U., Fischer, E., Steudle, E.: Plant Cell Environ. 1, 121–129 (1978).Google Scholar
  94. Lynch, J., Epstein, E., Lauchli, A.: Na+-K+ relation ships in salt-stressed barley, 347–352. In: Plant Nutrition 1982, ed. A. Scaife. London: Commonwealth Agricultural Bureau 1982.Google Scholar
  95. Marrj, E.: Annu. Rev. Plant Physiol. 30, 273–288 (1979).Google Scholar
  96. Marin, B., Marin-Lanza, M., Komor, E.: Biochem. J. 198, 365–372 (1981a).PubMedGoogle Scholar
  97. Marin, B., Smith, J.A.C., Ltittge, U.: Planta 153, 486–493 (1981b).Google Scholar
  98. Marin, B., Cretin, H., D’auzac, J.: Physiol. Veg. 20, 333–346 (1982).Google Scholar
  99. Matile, P.: Physiol. Veg. 20, 303–310 (1982).Google Scholar
  100. Mettler, I.J., Leonard, R.T.: Plant Physiol. 63, 183–190 (1979)PubMedGoogle Scholar
  101. Nabors, M.W., Daniels, A., Nadolny, L., Brown, C.: Plant Sci. Lett. 4, 155–159 (1975)Google Scholar
  102. Nabors, M.W., Gibbs, S.E., Bernstein, C.S., Meis, M.E.: Z. Pf lanzenphysiol. 913–17 (1980).Google Scholar
  103. Nabors, M.W., Kroskey, C.S., McHugh, D.M.: Z. Pflanzenphysiol. 105, 341–349 (1982).Google Scholar
  104. Nishimura, M.: Plant Physiol. 70, 742–744 (1982).PubMedGoogle Scholar
  105. Ohkawa, T., Kohler, K., Bentrup, F.-W.: Planta 151, 88–94 (1981)Google Scholar
  106. Orton, T.J.: Z. Pflanzenphysiol. 98, 105–118 (1980).Google Scholar
  107. Osmond, C.B., Bjorkman, O., Anderson, D.J.: Physiological Processes in Plant Ecology. Toward a Synthesis with Atriplex. Berlin, Heidelberg, New York: Springer 1980.Google Scholar
  108. Parr, A.J., Hanke, D.E.: Phil. Trans. R. Soc. Lond. B 299, 459–468 (1982).Google Scholar
  109. Pierce, W.S., Hendrix, D.L.: Planta 146, 161–169 (1979).Google Scholar
  110. Pitman, M.G., Ltittge, U.: The ionic environment and plant ionic relations 5–34. In: Functional Responses to the Chemical and Biological Environment, eds. O.L. Lange, P.S. Nobel, C.B. Osmond, H. Ziegler. Encyclopedia of Plant Physiology, N.S., Vol. 12C. Berlin, Heidelberg, New York: Springer 1983.Google Scholar
  111. Rains, D.W., Croughan, T.P., Stavarek, S.J.: Selection of salt-tolerant plants using tissue culture, 279–292. In: Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals and Energy, eds. D.W. Rains, R.C. Valentine, A. Hollaender. New York, London: Plenum Press 1980.Google Scholar
  112. Rasi-Caldogno, F., De Michelis, M.I., Pugliarello, M.C.: Biochim. Biophys. Acta 642, 37–45 (1981)Google Scholar
  113. Ratner, A., Jacoby, B.: J. Exp. Bot. 27, 843–852 (1976).Google Scholar
  114. Rosen, A., Tal, M.: Z. Pflanzenphysiol. 102, 91–94 (1981).Google Scholar
  115. Rozema, J., Gude, H., Pollak, G.: New Phytol. 89, 201–217 (1981).Google Scholar
  116. Rush, D.W., Epstein, E.: Plant Physiol. 18, 1308–1313 (1981).Google Scholar
  117. Sanders, D.: J. Membr. Biol. 53, 129–141 (1980).Google Scholar
  118. Smith, M.K.: Mccomb, J.A.: Aust. J. Plant Physiol. 8, 267–275 (1981a)Google Scholar
  119. Smith, M.K.: ibid. 8, 437–442 (1981b).Google Scholar
  120. Stitt, M., Liley, R. Mcc., Heldt, H.W.: Plant Physiol. 70, 971–977 (1982).PubMedGoogle Scholar
  121. Stocker, O.: Erg. Biol. 3, 265–353 (1928).Google Scholar
  122. Stout, R.G., Cleland, R.E.: Plant Physiol. 69, 798–803 (1982).PubMedGoogle Scholar
  123. Strogonov, B.P.: Salt tolerance in isolated tissues and cells, 1–33. In: Structure and Function of Plant Cells in Saline Habitats: New Trends in the Study of Salt Tolerance, ed. B. Gollek. Jerusalem: Israeli Program for Scientific Translations 1973.Google Scholar
  124. Sze, H.: Proc. Natl. Acad. Sci. USA 77, 5904–5908 (1980)Google Scholar
  125. Sze, H.: Plant Physiol. 70, 498–505 (1982).PubMedGoogle Scholar
  126. Sze, H., Hodges, T.K.: Plant Physiol. 58, 304–308 (1976).PubMedGoogle Scholar
  127. Tal, M., Katz, A.: Z. Pflanzenphysiol. 98, 283–288 (1980).Google Scholar
  128. Tal, M., Heikin, H., Dehan, K.: Z. Pflanzenphysiol. 86, 231–240 (1978).Google Scholar
  129. Thoiron, B., Thoiron, A., Le Guiel, J., Ltittge, U., Thellier, M.: Physiol. Plant. 16, 352–356 (1979)Google Scholar
  130. Thom, M., Komor, E., Maretzki, A.: Plant Physiol. 69, 1320–1325 (1982a).PubMedGoogle Scholar
  131. Thom, M., Maretzki, A., Komor, E.: Plant Physiol. 69, 1315–1319 (1982b).PubMedGoogle Scholar
  132. Ting, I.P., Hanscom, Z.: Plant Physiol. 59, 511–514 (1977).PubMedGoogle Scholar
  133. Ting, I.P., Rayder, L.: Regulation of C3 to CAM shifts, 193–207. In: Crassulacean Acid Metabolism, eds. I.P. Ting, M. Gibbs. Rockvilie-Maryland: American Society Plant Physiologists 1982.Google Scholar
  134. Vakhmistrov, D.B., Tikhaya, N.I., Mishustina, N.E.: Physiol. Plant. 55, 155–160 (1982).Google Scholar
  135. Van Eijk, M.: Rec. Trav. Bot. Neerl. 36, 559–657 (1939).Google Scholar
  136. Wagner, G.J., Lin, W.: Biochim. Biophys. Acata 689, 261–266 (1982).Google Scholar
  137. Walker, R.R., Leigh, R.A.: Planta 153, 140–149 (1981a)Google Scholar
  138. Walker, R.R., Leigh, R.A.: ibid. 153, 150–155 (1981b)Google Scholar
  139. Wieneke, J., Lauchli, A.: Z. Pflanzenernahr. Bodenkd. 142, 799–814 (1979)Google Scholar
  140. Wieneke, J., Lauchli, A.: ibid. 143, 55–67 (1980).Google Scholar
  141. Winter, E.: Aust. J. Plant Physiol. 9, 227–237 (1982).Google Scholar
  142. Winter, E., Lauchli, A.: Aust. J. Plant Physiol. 9, 221–226 (1982).Google Scholar
  143. Winter, E., Preston, J.: Aust. J. Plant Physiol. 9, 251–259 (1982).Google Scholar
  144. Wynjones, R.G., Storey, R.: Aust. J. Plant Physiol. 5, 839–850 (1978).Google Scholar
  145. Wynjones, R.G., Storey, R., Leigh, R.A., Ahmad, N., Pollard, A.: A hypothesis on cytoplasmic osmoregulation, 121–136. In: Regulation of Cell Membrane Activities in Plants, eds. E. Marre, O. Ciferri. Amsterdam: North-Holland 1977.Google Scholar
  146. Yeo, A.R., Kramer, D., Lauchli, A., Gullasch, J.: J. Exp. Bot. 28, 17–29 (1977a)Google Scholar
  147. Yeo, A.R., Lauchli, A., Kramer, D., Gullasch, J.: Planta 134, 35–38 (1977b).Google Scholar
  148. Zenk, M.H.: Haploids in physiological and biochemical research, 339–354. In: Haploids in Higher Plants, ed. K. Kasha. Guelph: Univ. Press 1974.Google Scholar
  149. Zocchi, G., Hanson, J.B.: Plant Cell Environ. 6, 203–209 (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Ulrich Lüttge
    • 1
  1. 1.Institut für BotanikTechnischen Hochschule DarmstadtDarmstadtFed. Rep. of Germany

Personalised recommendations