Phloem Loading and Unloading

  • Ewald Komor
Part of the Progress in Botany / Fortschritte der Botanik book series (BOTANY, volume 45)


Since the classic discoveries of Malphighi, Hartwig and others it is known that in higher plants the photosynthetically derived assimilates are translocated, mostly in the form of sucrose, by specialized cells, the sieve tubes, to the growing tips and the storage organs. However, the principal mechanism of translocation has been constantly in dispute over the last 100 years. Although it is now generally accepted that diffusion alone cannot account for the observed transport rates over long distance, it is not clear how the acceleration of long distance transport occurs, that is, by pressure flow as MUNCH proposed (MUNCH 1930) or by catalyzed transfer along the sieve-tube cytoplasm (e.g. SCHUMACHER 1967). The unequivocal proof for or against these hypothesis is not available because of the lack of suitable experimental material, such as pure sieve tubes or pure companion cells; nevertheless in the last 10 years some decisive progress was made on certain aspects of transport by phloem so that easily understandable models can now be used as a basis for further experiments.


Parenchyma Cell Mesophyll Cell Companion Cell Sieve Tube Phloem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowen, J.E., Hunter, J.E.: Plant Physiol. 49, 789–793 (1972).PubMedCrossRefGoogle Scholar
  2. Cho, B.-H., Komor, E.: Plant Sci. Lett. 17, 425–43 5 (1980).CrossRefGoogle Scholar
  3. Colbert, J.T., Evert, R.F.: Planta 156, 135–151 (1982).CrossRefGoogle Scholar
  4. Conti, T.R., Geiger, D.R.: Plant Physiol. 70, 168–172 (1982).PubMedCrossRefGoogle Scholar
  5. Cronshaw, J.: Ber. Dtsch. Bot. Ges. 93, 123–139 (1980).Google Scholar
  6. Cronshaw, J., Esau, K.: J. Cell Biol. 34, 801–816 (1967).PubMedCrossRefGoogle Scholar
  7. Delrot, S., Bonnemain, J.-L.: Plant Physiol. 67, 560–564 (1981).PubMedCrossRefGoogle Scholar
  8. Despeghel, J. P., Delrot, S.: Plant Physiol. 71, 1–6 (1983).PubMedCrossRefGoogle Scholar
  9. Dörr, I.: Protoplasma 75, 167–184 (1972).CrossRefGoogle Scholar
  10. Evert, R.F., Eschrich, W., Heyser, W.: Planta 138, 279–294 (1978).CrossRefGoogle Scholar
  11. Fisher, D.B.: Planta 139, 19–24 (1978).CrossRefGoogle Scholar
  12. Fisher, D.J., Evert, R.F.: Planta 155, 377–387 (1982).CrossRefGoogle Scholar
  13. Fritz, E.: Planta 112, 169–179 (1973).CrossRefGoogle Scholar
  14. Gaylor, K.R., Glasziou, K.T.: Plant Physiol. 49, 563–568 (1972).CrossRefGoogle Scholar
  15. Giaquinta, R.: Plant Physiol. 60, 339–343 (1977).PubMedCrossRefGoogle Scholar
  16. Heyser, W.: Ber. Dtsch Bot. Ges. 93, 221–228 (1980).Google Scholar
  17. Heyser, W., Leonard, O., Heyser, R., Fritz, E., Eschrich, W.: Planta 122, 143–154 (1975).CrossRefGoogle Scholar
  18. Heyser, W., Evert, R.F., Fritz, E., Eschrich, W.: Plant Physiol. 62, 491–494 (1978).PubMedCrossRefGoogle Scholar
  19. Huber, S.C., Moreland, D.E.: Plant Physiol. 65, 560–562 (1980).PubMedCrossRefGoogle Scholar
  20. Komor, E.: Planta 137, 119–131 (1977)CrossRefGoogle Scholar
  21. Komor, E.: p. 635–676 in: Encyclopedia of Plant Physiology, N.S., Vol. 13A. Berlin, Heidelberg, New York: Springer 1982.Google Scholar
  22. Komor, E., Rotter, M., Tanner, W.: Plant Sci. Lett. 9, 153–162 (1977).CrossRefGoogle Scholar
  23. Komor, E., Thom, M., Maretzki, A.: Planta 153, 181–192 (1981)CrossRefGoogle Scholar
  24. Kriedemann, P., Beevers, H.: Plant Physiol. 42, 174–180 (1967).PubMedCrossRefGoogle Scholar
  25. Mason, T.G., Maskell, E.J.: Ann. Bot. 42, 189–253 (1928).Google Scholar
  26. Munch, E.: Die Stoffbewegungen der Pflanze. Jena: Fisher 1930.Google Scholar
  27. Robinson, S.P., Beevers, H.: Planta 152, 527–533 (1981).CrossRefGoogle Scholar
  28. Schuhmacher, W.: Handbuch der Pflanzenphysiologie, Vol. 13. Berlin, Heidelberg, New York: Springer 1967.Google Scholar
  29. Sjolund, R.D., Shih, C.Y.: J. Ultrastruct. Res. 82, 111–121 (1983a)PubMedCrossRefGoogle Scholar
  30. Sjolund, R.D., Shih, C.Y.: ibid. 82, 189–197 (1983b).PubMedCrossRefGoogle Scholar
  31. Sjolund, R.D., Shih, C.Y., Jensen, K.J.: J. Ultrastruct. Res. 82, 198–211 (1983c).PubMedCrossRefGoogle Scholar
  32. Srivastava, L., O’brien, T.: Protoplasma 61, 277–293 (1966).CrossRefGoogle Scholar
  33. Thorne, J.H.: Plant Physiol. 70, 953–958 (1982).PubMedCrossRefGoogle Scholar
  34. Vogelmann, T.C., Larson, P.R., Dickson, R.E.: Planta 156, 345–358 (1982).CrossRefGoogle Scholar
  35. Weiler, E.W., Ziegler, H.: Planta 152, 168–170 (1981).CrossRefGoogle Scholar
  36. Wright, J.P., Fisher, D.B.: Plant Physiol. 67, 845–848 (1981).PubMedCrossRefGoogle Scholar
  37. Ziegler, H.: p. 59-100 in: Encyclopedia of Plant Physiology, N.S., Vol. 1. Berlin, Heidelberg, New York: Springer 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Ewald Komor
    • 1
  1. 1.Lehrstuhl PflanzenphysiologieUniversität BayreuthBayreuthFed. Rep. of Germany

Personalised recommendations