Advertisement

ZAK Zürich pp 62-68 | Cite as

Möglichkeiten und Grenzen der zerebralen Reanimation

  • A. Wauquier
  • H. L. Edmonds
Conference paper
Part of the Anaesthesiologie und Intensivmedizin/Anaesthesiology and Intensive Care Medicine book series (A+I, volume 187)

Zusammenfassung

Die Experimentalforschung über Hirnischämie hat zu 2 bedeutenden Ergebnissen geführt:
  1. 1.

    Eine Erholung der Hirnfunktion ist, selbst nach längeren Zeiten als ursprünglich erwartet, möglich.

     
  2. 2.

    Die Hirnschädigung als Folge des primären Insults entwickelt sich erst später.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Artru AA, Steen PA, Miehefelder JD (1980) γ-Hydroxybutyrate: Cerebral metabolic, vascular and protective effects. J Neurochem 35/5:1114–1119CrossRefGoogle Scholar
  2. 2.
    Ashton D, Wauquier A (1979) Effects of some anti-epileptic, neuroleptic and gabaminergic drugs on convulsions induced in rats by injection of D,L-allylglycine. Pharmacol Biochem Behav 11: 221–226PubMedCrossRefGoogle Scholar
  3. 3.
    Ashton D, van Reempts J, Wauquier A (1981) Behavioural, eleetroencephalographic and histological study of the protective effect of etomidate against histotoxic dysoxia produced by cyanide. Arch Pharmacodyn Ther 254: 196–213Google Scholar
  4. 4.
    Bleyaert AL, Nemoto EM, Safar P, Stezoski SW, Mickell JJ, Moossy J, Rao Gr (1978) Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology 49: 390–398PubMedCrossRefGoogle Scholar
  5. 5.
    Brown AW, Brierley JB (1973) The earliest alterations in rat neurones and astrocytes after anoxia-ischemia. Acta Neuropathol 23: 9–22PubMedCrossRefGoogle Scholar
  6. 6.
    Carmeliet E (1982) Lidoflazine and calcium overload. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 395–402Google Scholar
  7. 7.
    Crockard HA, Lannotti F, Hunstock AT, Smith RD, Harris RJ, Symon L (1980) Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 11: 494–498PubMedCrossRefGoogle Scholar
  8. 8.
    Erdmann W, Faithfull NS (1982) The disturbance of cellular oxygen supply in the post hypoxic period. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 183–198Google Scholar
  9. 9.
    Flameng W, Xhonneux R, Borgers M (1982) Myocardial protection in open-heart surgery. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 403–416Google Scholar
  10. 10.
    Gisvold SE, Safar P, Alexander H (1982) Multi-faceted therapy after global brain ischemia in monkeys. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 295–298Google Scholar
  11. 11.
    Hempelmann CT, Lüben V, Klug N (1982) Möglichkeiten der Hirnprotektion unter besonderer Berücksichtigung von Etomidate ( Hypnomidate ). Notfallmedizin 8: 83–95Google Scholar
  12. 12.
    Hempelmann G, Dieter K, Volker L, V Bormann B (1982) Cerebral protection in neurosurgery, cardiac surgery and following cardiac arrest. J Cereb Blood Flow Metab 2: S66–S70PubMedGoogle Scholar
  13. 13.
    Hermans CFM, Fransen JF, Wauquier A (1982) Survival and neurological outcome after bilateral carotid ligation in the gerbil treated with ether, thiopental or etomidate. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 299–304Google Scholar
  14. 14.
    Hossman KA, Lechtape-Grüter H, Hossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204: 281–299CrossRefGoogle Scholar
  15. 15.
    Meldrum B, Griffiths T, Evans M (1982) Hypoxia and neuronal hyperexcitability–A clue to mechanisms of brain protection. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 275–286Google Scholar
  16. 16.
    Mullie A, Hermans C, Vandevelde K, Wauquier A (1981) Resuscitability with brain protective drugs during cardiopulmonary resuscitation in dogs. Crit Care Med 93: 183CrossRefGoogle Scholar
  17. 17.
    Mullie A, Vandevelde K, van Belle H, Jageneau A, van Loon J, Hermans C, Wauquier A (1982) In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 311–314Google Scholar
  18. 18.
    Nemoto EM, Shiu GK, Memmer JP, Bleyaert A (1982) Free fatty acids (FFA) in the pathogenesis and therapy of ischemic brain injury. J Cereb Blood Flow Metab 2/l: S59–S61Google Scholar
  19. 19.
    Rehncrona S, Westerberg E, Åkesson B, Siesjö BK (1982) Brain cortical fatty acids and phospolipids during and following complete and severe incomplete ischemia. J Neurochem 38: 84–93PubMedCrossRefGoogle Scholar
  20. 20.
    Safar P, Gisvold SE, Vaagenes P, Hendrickx HHL, Bücher GBN, Stezoski W, Alexander H (1982) Long-term animal models for the study of global brain ischemia (GBI). In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 147–170Google Scholar
  21. 21.
    Shiu GK, Nemoto CM (1981) Barbiturate attenuation of brain free fatty acid liberation during global ischemia. J Neurochem 37: 1448–1456PubMedCrossRefGoogle Scholar
  22. 22.
    Siesjö BK (1981) Cell damage in the brain: A speculative hypothesis. J Cereb Blood Flow Metab 1: 155–185PubMedCrossRefGoogle Scholar
  23. 23.
    Steen PA, Milde JH, Michenfelder JD (1979) No barbiturate protection in a dog model of complete cerebral ischemia. Ann Neurol 5: 343–349PubMedCrossRefGoogle Scholar
  24. 24.
    Steen PA, Newberg LA, Milde JH, Michenfelder JD (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 3: 38–43PubMedCrossRefGoogle Scholar
  25. 25.
    Symon L, Harris RJ, Branston NM (1982) Calcium ions and calcium antagonists in ischaemia. Acta Neurochir (Wien) 63: 267–275CrossRefGoogle Scholar
  26. 26.
    Todd NM, Chadwick HS, Shapiro HM, Dunlop BJ, Marshall L, Dueck R (1982) The neurologic effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology 57: 76–86PubMedCrossRefGoogle Scholar
  27. 27.
    Van Reempts J, Borgers M (1982) Brain protection: A histological assessment. J Cereb Blood Flow Metab 2: S57–S58PubMedGoogle Scholar
  28. 28.
    Van Reempts J, Borgers M, van Dael L, van Eyndhoven J, van De Ven M (1983) Protection with flunarizine against hypoxic-ischemic damage of the rat cerebral cortex. A quantitative morphologic assessment. Arch Int Pharmacodyn Ther 262: 76–88Google Scholar
  29. 29.
    Wauquier A (1982) Brain protective properties of etomidate and flunarizine. J Cereb Blood Flow Metab 2: S53–S56PubMedGoogle Scholar
  30. 30.
    Wauquier A (im Druck) Effect of calcium entry blockers in models of brain hypoxia. International Workshop on Calcium Entry Blockers. Pergamon, New YorkGoogle Scholar
  31. 31.
    Wauquier A, Declerck AC (1982) Neurophysiology of the hypoxic brain. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 71–86Google Scholar
  32. 32.
    Wauquier A, Ashton D, Clincke G, Niemegeers CJE, Janssen PA J (1980) Etomidat, ein barbituratfreies Hypnotikum: antikonvulsive, anti-anoxische und hirnprotektive Wirkung im Tier experiment. In: Opitz A, Degen R (Hrsg) Anästhesie bei zerebralen Krampfanfällen und Intensivtherapie des Status Epilepticus. Perimed, Erlangen, S 183–203Google Scholar
  33. 33.
    Wauquier A, Ashton D, Clincke G, Niemegeers CJE (1981) Anti-hypoxic effects of etomidate, thiopental and methohexital. Arch Int Pharmacodyn Ther 249: 330–334PubMedGoogle Scholar
  34. 34.
    Wauquier A, Clincke G, Ashton D, van Reempts J (1981) Considerations on models and treatment of brain hypoxia. Dev Neurosci 13: 95–114Google Scholar
  35. 35.
    Wauquier A, Ashton D, Clincke G, van Reempts J (1982) Pharmacological protection against brain hypoxia: The efficacy of flunarizine, a calcium entry blocker. In: Clifford-Rose F, Amery WK (eds) The role of hypoxia in the pathogenesis of migraine. Pitman, London, pp 139–154Google Scholar
  36. 36.
    White BC, Gadzinski DS, Hoehner PJ, Krome Ch, Hoehner Th, White JD, Trombley JH (1982) Effect of flunarizine on canine cerebral cortical blood flow and vascular resistance post cardiac arrest. Ann Emerg Med 11: 119–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Wauquier
  • H. L. Edmonds

There are no affiliations available

Personalised recommendations