Skip to main content

Recollections of Early Laboratory Experiments on Vision

  • Chapter
Foundations of Sensory Science
  • 150 Accesses

Abstract

My task is to describe, for readers mostly younger than myself, a half century of experience in the field of vision research. But there are two formidable barriers to this communication. First, I can scarcely remember the impetuous and inexperienced person that I was so long ago; and secondly, the world itself has changed so radically since then. As André Maurois once said, “The minds of different generations are as impenetrable one by the other as are the monads of Leibniz.” I never could understand Leibniz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler FH, Fliegelman F (1934) Influence of fixation on the visual acuity. Arch Ophthalmol 12:475–483

    Article  Google Scholar 

  • Adrian ED (1945) The electric response of the human eye. J Physiol 104:84–104

    PubMed  CAS  Google Scholar 

  • Adrian ED (1946) Rod and cone components in the electric response of the eye. J Physiol 105:24–37

    Google Scholar 

  • Aiba TS, Alpern M, Maaseidvaag F (1967) The electroretinogram evoked by the excitation of human foveal cones. J Physiol 189:43–62

    PubMed  CAS  Google Scholar 

  • Anderson EE, Weymouth FW (1923) Visual perception and the retinal mosaic. I. Retinal mean local sign. Am J Physiol 64:561

    Google Scholar 

  • Armington JC (1952) A component of the human electroretinogram associated with red color vision. J Opt Soc Am 42:393–401

    Article  PubMed  CAS  Google Scholar 

  • Armington JC (1974) The electroretinogram. Academic, New York

    Google Scholar 

  • Armington JC, Biersdorf WR (1956) Flicker and color adaptation in the human electroretinogram. J Opt Soc Am 46:393–400

    Article  PubMed  CAS  Google Scholar 

  • Armington JC, Krauskopf J, Wooten BR (eds) (1978) Visual psychophysics and physiology: a volume dedicated to Lorrin Riggs. Academic, New York

    Google Scholar 

  • Asher H (1951) The electroretinogram of the blind spot. J Physiol 112:40P

    Google Scholar 

  • Barlow RB, Bolanowsky SJ, Brachman ML (1977) Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197:86–89

    Article  PubMed  Google Scholar 

  • Bartlett NR (1965) Thresholds as dependent on some energy relations and characteristics of the subject. In: Graham CH (ed) Vision and visual perception. Wiley, New York, pp 154–184

    Google Scholar 

  • Berry RN (1948) Quantitative relations among vernier, real depth, and stereoscopic depth acuities. J Exp Psychol 38:708–721

    Article  PubMed  CAS  Google Scholar 

  • Bouman MA (1950) Peripheral contrast thresholds of the human eye. J Opt Soc Am 40:825–832

    Article  Google Scholar 

  • Boynton RM (1953) Stray light and the human electroretinogram. J Opt Soc Am 43:442–449

    Article  PubMed  CAS  Google Scholar 

  • Boynton RM (1979) Human color vision. Holt, Rinehart, and Winston, New York

    Google Scholar 

  • Boynton RM, Riggs LA (1951) The effect of stimulus area and intensity upon the human retinal response. J Exp Psychol 42:217–226

    Article  PubMed  CAS  Google Scholar 

  • Brindley GS (1960) Physiology of the retina and visual pathway. Arnold, London

    Google Scholar 

  • Butler TW, Riggs LA (1978) Color differences scaled by chromatic modulation sensitivity functions. Vision Res 18:1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Campbell FW, Robson JG (1968) Application of fourier analysis to the visibility of gratings. J Physiol 197:557–566

    Google Scholar 

  • Carpenter RHS (1977) Movements of the eye. Pion, London

    Google Scholar 

  • Cornsweet TN (1956) Determination of the stimuli for involuntary drifts and saccadic eye movements. J Opt Soc Am 46:987–993

    Article  PubMed  CAS  Google Scholar 

  • Delabarre EB (1898) A method of recording eye-movements. Am J Psychol 9:572–574

    Article  Google Scholar 

  • Delabarre EB (1928) Dighton Rock. Neale, New York

    Google Scholar 

  • DeVries H (1943) The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10:553–564

    Article  Google Scholar 

  • Ditchburn RW (1973) Eye movements and visual perception. Oxford University Press, London

    Google Scholar 

  • Ditchburn RW, Ginsborg BL (1952) Vision with a stabilized retinal image. Nature 170:36

    Article  PubMed  CAS  Google Scholar 

  • Ditchburn RW, Ginsborg BL (1953) Involuntary eye movements during fixation. J Physiol 119:1–17

    PubMed  CAS  Google Scholar 

  • Fender DH (1955) Torsional motions of the eyeball. Br J Ophthal 39:65–72

    Article  CAS  Google Scholar 

  • Fry GA, Bartley SH (1935) The relation of stray light in the eye to the retinal action potential. Am J Physiol 111:335–340

    Google Scholar 

  • Graham CH (1933) The relation of nerve response and retinal potential to number of sense cells illuminated in an eye lacking lateral connections. J Cell Comp Physiol 2:295–304

    Article  Google Scholar 

  • Graham CH (ed) (1965) Vision and visual perception. Wiley, New York

    Google Scholar 

  • Graham CH, Granit R (1931) Comparative studies on the peripheral and central retina: VI. Am J Physiol 98:664–673

    Google Scholar 

  • Graham CH, Margaria R (1935) Area and the intensity relation in the peripheral retina. Am J Physiol 113:299–305

    Google Scholar 

  • Graham CG, Riggs LA (1934) The visibility curve of the white rat as determined by the electrical retinal response to lights of different wavelengths. J Gen Psychol 12:279–295

    Article  Google Scholar 

  • Graham CH, Kemp EH, Riggs LA (1935) Analysis of the electrical retinal responses of color-discriminating eye to lights of different wave-lengths. J Gen Psychol 13:275–296

    Article  Google Scholar 

  • Granit R (1935) Two types of retinas and their electrical responses to intermittent stimuli in light and dark adaptation. J Physiol 85:421–438

    PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 127:400–415

    Google Scholar 

  • Hartline HK, Graham CH (1932) Nerve impulses from single receptors in the eye. J Cell Comp Physiol 1:277–295

    Article  Google Scholar 

  • Hartline HK, Ratliff F (1957) Inhibitory interaction of receptor units in the eye of Limulus. J Gen Physiol 40:357–376

    Article  PubMed  CAS  Google Scholar 

  • Hartridge H, Thomson LC (1948) Methods of investigating eye movements. Br J Ophthalmol 32:581–591

    Article  Google Scholar 

  • Hecht S (1934) Vision. II. The nature of the photoreceptor process. In: Murchison C (ed) Handbook of general experimental psychology. Clark University Press, Worcester, MA

    Google Scholar 

  • Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta, and vision. J Gen Physiol 25:819–840

    Article  PubMed  CAS  Google Scholar 

  • Holt EB (1903) Eye-movement and central anaesthesia. I. The problem of anaesthesia during eye-movement. Psychol Monogr No. 17

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction, and functional architecture in the cat’s striate cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    PubMed  CAS  Google Scholar 

  • Hunter WS (1914) The after-effect of visual motion. Psychol Rev 21:245–277

    Article  Google Scholar 

  • Hunter WS (1915) Retinal factors in visual after-movement. Psychol Rev 22:479–189

    Article  Google Scholar 

  • Hunter WS (1942) Visually controlled learning as a function of time and intensity of stimulation. J Exp Psychol 31:423–429

    Article  Google Scholar 

  • Jasper HH, Carmichael L (1935) Electric potentials from the intact human brain. Science 81:51–53

    Article  PubMed  CAS  Google Scholar 

  • Johnson EP, Riggs LA, Schick AML (1966) Photopic retinal potentials evoked by phase alternation of a barred pattern. Clinical electroretinography. Vis Res [Suppl]:75–91

    Google Scholar 

  • Keesey UT (1960) Effects of involuntary eye movements on visual acuity. J Opt Soc Am 50:769–774

    Article  PubMed  CAS  Google Scholar 

  • Kohler I (1964) The formation and transformation of the perceptual world. International Universities Press, New York

    Google Scholar 

  • Krauskopf J, Riggs LA (1959) Interocular transfer in the disappearance of stabilized images. Am J Psychol 72:248–252

    Article  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling. Psychometrika 29:1–27, 115–129

    Article  Google Scholar 

  • Latour PL (1962) Visual threshold during eye movements. Vision Res 2:261–262

    Article  Google Scholar 

  • Lindsley DB, Hunter WS (1939) A note on polarity potentials from the human eye. Proc Nat Acad Sci USA 25:180–183

    Article  PubMed  CAS  Google Scholar 

  • Lord MP, Wright WD (1948) Eye movements during monocular fixation. Nature 162:25–26

    Article  PubMed  CAS  Google Scholar 

  • Marx E, Trendelenburg W (1911) Über die Genauigkeit der Einstellung des Auges beim Fixieren. Z Sinnesphysiol 45:87–102

    Google Scholar 

  • Maurois A (1935) Ariel, a Shelley romance. Penguin, London

    Google Scholar 

  • McCollough C (1965) Color adaptation of edge-detectors in the human visual system. Science 149:1115–1116

    Article  PubMed  CAS  Google Scholar 

  • Motokawa K, Mita T (1942) Über eine einfachere Untersuchungsmethode und Eigenschaften der Aktionsströme der Netzhaut des Menschen. Tohoku J Exp Med 42:114–133

    Article  Google Scholar 

  • Orschansky J (1898) Eine Methode, die Augenbewegungen direkt zu untersuchen (Ophthalmograph). Zentralbl Physiol 12:785

    Google Scholar 

  • Petry HM, Donovan WJ, Moore RK, Dixon WB, Riggs LA (1982) Changes in the human visually evoked cortical potential in response to chromatic modulation of a sinusoidal grating. Vision Res 22:745–755

    Article  PubMed  CAS  Google Scholar 

  • Ratliff F (1950) The role of physiological nystagmus in visual acuity. PhD dissertation, Brown University

    Google Scholar 

  • Ratliff F (1952) The role of physiological nystagmus in monocular acuity. J Exp Psychol 43:163–172

    Article  PubMed  CAS  Google Scholar 

  • Ratliff F (1962) Some interrelations among physics, physiology, and psychology in the study of vision. In: Koch S (ed) Psychology: a study of a science, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Ratliff F, Riggs LA (1950) Involuntary motions of the eye during monocular fixation. J Exp Psychol 40:687–701

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1972) Evoked potentials in psychology, sensory physiology, and clinical medicine. Wiley, New York

    Google Scholar 

  • Riggs LA (1937) Dark adaptation in the frog eye as determined by the electrical response of the retina. J Cell Comp Physiol 9:491–510

    Article  Google Scholar 

  • Riggs LA (1940) Recovery from the discharge of an impulse in a single visual receptor unit. J Cell Comp Physiol 15:273–283

    Article  Google Scholar 

  • Riggs LA (1941) Continous and reproducible records of the electrical activity of the human retina. Proc Soc Exp Biol Med 48:204–207

    Google Scholar 

  • Riggs LA (1974) Responses of the visual system to fluctuating patterns. Am J Optom Physiol Opt 51:725–735

    PubMed  CAS  Google Scholar 

  • Riggs LA, Graham CH (1940) Some aspects of light adaptation in a single photoreceptor unit. J Cell Comp Physiol 16:15–23

    Article  Google Scholar 

  • Riggs LA, Ratliff F (1951) Visual acuity and the normal tremor of the eyes. Science 114:17–18

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Ratliff F (1952) The effects of counteracting the normal movements of the eye. J Opt Soc Am 42:872–873

    Google Scholar 

  • Riggs LA, Tulunay SU (1959) Visual effects of varying the extent of compensation for eye movements. J Opt Soc Am 49:741–745

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Mueller CG, Graham CH, Mote FA (1947) Photographic measurements of atmospheric boil. J Opt Soc Am 37:415–420

    Article  Google Scholar 

  • Riggs LA, Mote FA, Mueller CG, Graham CH (1948) Two devices for evaluating stereoscopic reticle patterns. Am J Psychol 41:542–552

    Google Scholar 

  • Riggs LA, Berry RN, Wayner MJ (1949) A comparison of electrical and psychophysical determinations of the spectral sensitivity of the human eye. J Opt Soc Am 39:427–436

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Ratliff F, Cornsweet JC, Cornsweet TN (1953) The disappearance of steadily fixated visual test objects. J Opt Soc Am 43:495–501

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Armington JC, Ratliff F (1954) Motions of the retinal image during fixation. J Opt Soc Am 44:315–321

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Ratliff F, Keesey ÜT (1961) Appearance of Mach bands with a motionless retinal image. J Opt Soc Am 51:702–703

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus patterns. Science 144:567

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, White KD, Eimas PD (1974) Establishment and decay of orientation-contingent aftereffects of color. Percept Psychophys 16:535–542

    Article  Google Scholar 

  • Rosenblith WA (ed) (1962) Processing neuroelectric data. MIT Press, Cambridge

    Google Scholar 

  • Schlosberg H (1958) The psychological laboratory of Brown University. Am J Psychol 71:768–776

    Article  PubMed  CAS  Google Scholar 

  • Schubert G, Bornschein H (1952) Beitrag zur Analyse des menschlichen Elektroretinogramms. Ophthalmologica 123:396–413

    Article  PubMed  CAS  Google Scholar 

  • Sekuler RW, Ganz L (1963) Aftereffect of seen motion with a stabilized retinal image. Science 139:419–420

    Article  PubMed  CAS  Google Scholar 

  • Volkmann FC (1962) Vision during voluntary saccadic eye movements. J Opt Soc Am 52:571–578

    Article  PubMed  CAS  Google Scholar 

  • Volkmann FC, Schick AML, Riggs LA (1968) Time course of visual inhibition during voluntary saccades. J Opt Soc Am 58:562–569

    Article  PubMed  CAS  Google Scholar 

  • Volkmann FC, Riggs LA, Moore RK (1980) Eyeblinks and visual suppression. Science 207:900–902

    Article  PubMed  CAS  Google Scholar 

  • Wald G, Clark A (1937/1938) Visual adaptation and chemistry of the rods. J Gen Physiol 21:93–105

    Article  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptative radiation. Cranbrook Press, Michigan

    Book  Google Scholar 

  • Westheimer G, McKee SP (1979) What prior uniocular processing is necessary for stereopsis? Invest Ophthalmol Vis Sci 18:614–621

    PubMed  CAS  Google Scholar 

  • White KD, Petry HM, Riggs LA, Miller J (1978) Binocular interactions during establishment of McCollough effects. Vision Res 18:1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum, New York

    Google Scholar 

  • Zuber BL, Stark L (1966) Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp Neurol 16:65–79

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riggs, L.A. (1984). Recollections of Early Laboratory Experiments on Vision. In: Dawson, W.W., Enoch, J.M. (eds) Foundations of Sensory Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69425-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69425-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69427-1

  • Online ISBN: 978-3-642-69425-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics