Skip to main content

Biophysics of the Mammalian Ear

  • Chapter
Foundations of Sensory Science

Abstract

The foundations of a science may be viewed from various aspects. To gain a better perspective, I had originally assumed in my chapter the position of a somewhat detached observer. However, the editors of the handbook have reminded me that by writing it in an almost impersonal way, as I did, I fulfilled only part of my obligation, and suggested that I make some additions concerning factors that have influenced my scientific career. In an attempt to comply with their request, I have added some autobiographical notes in this Introduction, and have personalized some descriptions of my contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Names Containing von are alphabetized in this list under v

  • Andersen HC, Hansen CC, Neergaard EG (1962) Experimental studies on sound transmission in the human ear. Acta Otolaryngol 54:511–520

    PubMed  CAS  Google Scholar 

  • Andersen HC, Hansen CC, Neergaard EG (1963) Experimental studies on sound transmission in the human ear. Acta Otolaryngol 56:307–317

    PubMed  CAS  Google Scholar 

  • Bogert BP (1951) Determination of the effects of dissipation in the cochlear partition by means of a network representing the basilar membrane. J Acoust Soc Am 23:151–154

    Google Scholar 

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Brodel M (1946) Three unpublished drawings of the anatomy of the human ear. Saunders, Philadelphia

    Google Scholar 

  • Dahman H (1929, 1930) Zur Physiologie des Hörens; experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette, sowie über deren Verhalten auf Ton und Luftdruck. Z Hals-Nasen-Ohrenheilkd 24:462–497; 27:329–368

    Google Scholar 

  • Dallos P (1970) Low-frequency auditory characteristics: species dependence. J Acoust Soc Am 48:489–499

    PubMed  CAS  Google Scholar 

  • Dallos P, Billone MC, Durrant JD, Wang C-Y, Raynor S (1972) Cochlear inner and outer hair cells: functional differences. Science 177:356–358

    PubMed  CAS  Google Scholar 

  • Feldman AS, Wilber LA (eds) (1976) Acoustic impedance and admittance — the measurement of middle ear function. Williams and Wilkins, Baltimore

    Google Scholar 

  • Fischler H, Frei EH, Spira D, Rubinstein M (1967) Dynamic response of middle ear structures. J Acoust Soc Am 41:1220–1231

    PubMed  CAS  Google Scholar 

  • Fletcher H (1929) Speech and hearing. Van Nostrand, New York

    Google Scholar 

  • Fletcher H (1951) On the dynamics of the cochlea. J Acoust Soc Am 23:637–645

    Google Scholar 

  • Frank O (1923) Die Leitung des Schalles im Ohr. Sitzungsber Akad Wiss München, vol 53, S. 11–77

    Google Scholar 

  • Geisler CD (1976) Mathematical models of the mechanics of the inner ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V/3. Springer, Berlin, pp 391–15

    Google Scholar 

  • Geisler CD, Hubbard AE (1971) A hybrid-computer model of the cochlea. In: Sachs MB (ed) Physiology of the auditory system. National Educational Consultants, Baltimore, Maryland, pp 39–14

    Google Scholar 

  • Guinan J, Peake WT (1967) Middle ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261

    PubMed  Google Scholar 

  • Johnstone BM, Boyle AJF (1967) Basilar membrane vibrations examined with the Mössbauer technique. Science 158:390–391

    Google Scholar 

  • Johnstone BM, Taylor K (1970) Mechanical aspects of cochlear function. In: Plomp R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing. Sij- thoff, Leiden, pp 81–93

    Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from the human auditory system. J Acoust Soc Am 64:1386–1391

    PubMed  CAS  Google Scholar 

  • Kemp DT, Chum R (1980) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213–232

    PubMed  CAS  Google Scholar 

  • Khanna SM, Leonard DGB (1982) Basilar membrane tuning in the cat cochlea. Science 215:305–306

    PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51:1904–1920

    PubMed  CAS  Google Scholar 

  • Kiang NY-S (1965) Discharge patterns of single fibers in the cat’s auditory nerve, Research monograph 35. MIT Press, Cambridge

    Google Scholar 

  • Kohllöffel LUE (1972a) A study of basilar membrane vibrations. II. The vibratory amplitude and phase pattern along the basilar membrane (postmortem). Acustica 27:66–81

    Google Scholar 

  • Kohllöffel LUE (1972b) A study of basilar membrane vibrations. III. The basilar membrane frequency response curve in the living guinea pig. Acustica 27:82–89

    Google Scholar 

  • Kucharski W (1930) Schwingungen von Membranen in einer pulsierenden Flüssigkeit (Ein Beitrag zur Resonanztheorie des Hörens). Phys Z 31:264–280

    Google Scholar 

  • LePage EL, Johnstone BM (1980) Basilar membrane mechanics in the guinea pig cochlea. J Acoust Soc Am 67:S45(A)

    Google Scholar 

  • Lüscher E, Zwislocki J (1947) The decay of sensation and the remainder of adaptation after short pure-tone impulses on the ear. Acta Otolaryngol 35:428–145

    Google Scholar 

  • Mach E (1864) Ãœber die physiologische Wirkung räumlich vertheilter Lichtreize. Sitzungsber. Akad Wiss Wien math-nat. kl. Abt. 2, 57, 11

    Google Scholar 

  • Metz O (1946) In acoustic impedance measured on normal and pathological ears. Acta Otolaryngol [Suppl] 63

    Google Scholar 

  • Møller AR (1963) Transfer function of the middle ear. J Acoust Soc Am 35:1526–1534

    Google Scholar 

  • Møller AR (1965) An experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta Otolaryngol 59:1–19

    Google Scholar 

  • Møller AR (1974) The acoustic middle ear muscle reflex. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V/l. Springer, Berlin, pp 519–548

    Google Scholar 

  • Mundie JR (1963) The impedance of the ear — a variable quantity. In: Fletcher JL (ed) Middle ear function seminar, U.S. Army medical research lab, Fort Knox, Kentucky

    Google Scholar 

  • Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689

    PubMed  CAS  Google Scholar 

  • Onchi Y (1961) Mechanism of the middle ear. J Acoust Soc Am 33:794–805

    Google Scholar 

  • Peake WT, Guinan J J Jr (1967) Circuit model for the cat’s middle ear. Quart Prog Rpt 84:320–326. MIT Res. Lab. Electronics, Cambridge

    Google Scholar 

  • Peake WT, Ling A Jr (1980) Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity. J Acoust Soc Am 67:1736–1745

    PubMed  CAS  Google Scholar 

  • Peterson LC, Bogert BP (1950) A dynamical theory of the cochlea. J Acoust Soc Am 22:369- 381

    Google Scholar 

  • Ranke OF (1931) Die Gleichrichter-Resonanztheorie. Liehmann, Munich

    Google Scholar 

  • Ranke OF (1942) Das Massen Verhältnis zwischen Membrane und Flüssigkeit im Innenohr. AkustZ 7:1–11

    Google Scholar 

  • Ranke OF (1950) Theory of operation of the cochlea: a contribution to the hydrodynamics of the cochlea. J Acoust Soc Am 22:772–777

    Google Scholar 

  • Rasmussen AT (1943) Outlines of neuro-anatomy. Brown, Dubuque

    Google Scholar 

  • Reboul JA (1938) Théorie des phénomènes mécaniques se passant dans l’oreille interne. J Phys Radium 9:185–194

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231

    PubMed  Google Scholar 

  • Rhode WS (1973) An investigation of postmortem cochlear mechanics using the Mössbauer effect. In: Moller AR (ed) Basic mechanisms in hearing. Academic, New York

    Google Scholar 

  • Rhode WS (1980) Cochlear partition vibration — recent views. J Acoust Soc Am 67:1696–1703

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1977) The tuning properties of cochlear hair cells. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing. Academic, London, pp 71–78

    Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 283:261–290

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141

    PubMed  CAS  Google Scholar 

  • Sokolich WG, Hamernik RP, Zwislocki J J, Schmiedt RA (1976) Inferred response polarities of cochlear hair cells. J Acoust Soc Am 59:963–974

    PubMed  CAS  Google Scholar 

  • Sondhi MM (1978) Method for computing motion in a two-dimensional cochlear model. J Acoust Soc Am 63:1468–1477

    PubMed  CAS  Google Scholar 

  • Stevens SS, Davis H (1938) Hearing. Wiley, New York

    Google Scholar 

  • Tasaki I, Davis H, Legouix JP (1952) The space-time pattern of cochlear microphonics (guinea pig) as recorded by differential electrodes. J Acoust Soc Am 24:502–519

    Google Scholar 

  • Terkildsen K, Nielsen S (1960) An electroacoustic impedance measuring bridge for clinical use. Arch Otolaryngol 72:339–346

    PubMed  CAS  Google Scholar 

  • Ter Kuile E (1900) Die Ãœbertragung der Energie von der Grundmembran auf die Haarzellen. Pflügers Arch Ges Physiol 79:146–157

    Google Scholar 

  • Tonndorf J (1958) Harmonie distortion in cochlear models. J Acoust Soc Am 30:929–937

    Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233

    PubMed  CAS  Google Scholar 

  • Tonndorf J, Khanna SM, Fingerhood BJ (1966) The input impedance of the inner ear in cats. Ann Otol Rhinol Laryngol 75:752–763

    PubMed  CAS  Google Scholar 

  • Viergever MA (1980) Mechanics of the inner ear. Delft University Press, Delft

    Google Scholar 

  • Voldrich L (1948) Mechanical properties of basilar membrane. Acta Otolarngol 86:331–335

    Google Scholar 

  • von Békésy G (1928) Zur Theorie des Hoerens: die Schwingungsform der Basilarmembran. PhysZ 29:793–810

    Google Scholar 

  • von Békésy G (1932) Zur Theorie des Hörens bei der Schallaufnahme durch Knochenleitung. Ann Phys 13:111–136

    Google Scholar 

  • von Békésy G (1936) Zur Physik des Mittelohres und über das Hören bei fehlerhaftem Trommelfell. Akust Z 1:13–23

    Google Scholar 

  • von Békésy G (1941a) Ãœber die Elastizität der Schneckentrennwand des Ohres. Akust Z 6:265–278

    Google Scholar 

  • von Békésy G (1941b) Ãœber die Messung der Schwingungsamplitude der Gehörknöchelchen mittels einer kapazitiven Sonde. Akust Z 6:1–16

    Google Scholar 

  • von Békésy G (1942) Ãœber die Schwingungen der Schneckentrennwand beim Präparat und Ohrenmodell. Akust Z 7:173–186

    Google Scholar 

  • von Békésy G (1943) Ãœber die Resonanzkurve und die Abklingzeit der verschiedenen Stellen der Schneckentrennwand. Akust Z 8:66–76

    Google Scholar 

  • von Békésy G (1944) Ãœber die mechanische Frequenzanalyse in der Schnecke verschiedener Tiere. Akust Z 9:3–11

    Google Scholar 

  • von Békésy G (1947) The variation of phase along the basilar membrane with sinusoidal vibrations. J Acoust Soc Am 19:452–460

    Google Scholar 

  • von Békésy G (1951) Microphonics produced by touching the cochlear partition with a vibrating electrode. J Acoust Soc Am 23:29–35

    Google Scholar 

  • von Békésy G (1953) Shearing microphonics produced by vibrations near the inner and outer hair cells. J Acoust Soc Am 25:786–790

    Google Scholar 

  • von Békésy G (1955) Paradoxical direction of wave travel along the cochlear partition. J Acoust Soc Am 27:137–145

    Google Scholar 

  • von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • von Békésy G, Rosenblith WA (1948) The early history of hearing: observations and theories. J Acoust Soc Am 20:727–748

    Google Scholar 

  • von Békésy G, Rosenblith WA (1951) The mechanical properties of the ear. In: Stevens SS (ed) Handbook of experimental psychology. Wiley, New York, pp 1075–1115

    Google Scholar 

  • von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik, 1 st edn Vieweg, Brunswick 1863: English translation: On the sensations of tone. Dover, New York, 1885, 1954

    Google Scholar 

  • von Helmholtz HLF (1868) Die Mechanik der Gehörknöchelchen und des Trommelfells. Pflügers Arch Ges Physiol 1:1–60

    Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90

    PubMed  CAS  Google Scholar 

  • Wever EG (1949) Theory of hearing. Wiley, New York

    Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton

    Google Scholar 

  • Wever EG, Lawrence M, Smith KR (1948a) The middle ear in sound conduction. Arch Otolaryngol 48:19–35

    Google Scholar 

  • Wever EG, Lawrence M, Smith KR (1948b) The effects of negative air pressure in the middle ear. Ann Otol Rhinol Laryngol 57:418–428

    Google Scholar 

  • Wittmaack K (1917) Ãœber experimentelle Schallschädigung mit besonderer Berücksichtigung der Körperleitungsschädigung. Beitr Anat Ohr 9:1–37

    Google Scholar 

  • Zweig G, Lipes R, Pierce JR (1976) The cochlear compromise. J Acoust Soc Am 59:975–982

    PubMed  CAS  Google Scholar 

  • Zwislocki J (Zwislocki-Moscicki J) (1946) Ãœber die mechanische Klanganalyse des Ohres. Experientia 2:415–117

    PubMed  CAS  Google Scholar 

  • Zwislocki J (Zwislocki-Moscicki J) (1948) Theorie der Schneckenmechanik. Acta Otolaryngol [Suppl] 72

    Google Scholar 

  • Zwislocki J (1953 a) Wave motion in the cochlea caused by bone conduction. J Acoust Soc Am 25:986–989

    Google Scholar 

  • Zwislocki J (1953b) Review of recent mathematical theories of cochlear dynamics. J Acoust Soc Am 25:743–751

    Google Scholar 

  • Zwislocki J (1955) The nature of auditory stimuli and their attenuation. Symposium on physiological psychology, ONR report ACR-1. Office of Naval Research, Washington, DC

    Google Scholar 

  • Zwislocki J (1957a) Some measurements of the impedance at the eardrum. J Acoust Soc Am 29:349–356

    Google Scholar 

  • Zwislocki J (1957b) Some impedance measurements on normal and pathological ears. J Acoust Soc Am 29:1312–1317

    Google Scholar 

  • Zwislocki J (1962) Analysis of middle-ear function. Part I: Input impedance. J Acoust Soc Am 34:1514–1523

    Google Scholar 

  • Zwislocki J (1963) Analysis of the middle-ear function. Part II: Guinea-pig ear. J Acoust Soc Am 35:1034–1040

    Google Scholar 

  • Zwislocki JJ (1965) Analysis of some auditory characteristics. In: Luce RD, Bush RR, Galanter E (eds) Handbook of mathematical psychology, vol 3. Wiley, New York, pp 1–97

    Google Scholar 

  • Zwislocki JJ (1974) Cochlear waves: interaction between theory and experiments. J Acoust Soc Am 55:578–583

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1975) The role of the external and middle ear in sound transmission. In: Eagles EL (ed) The nervous system, vol 3. Raven, New York, pp 45–55

    Google Scholar 

  • Zwislocki JJ (1980a) Theory of cochlear mechanics. Hear Res 2:171–182

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1980b) Five decades of research on cochlear mechanics. J Acoust Soc Am 67:1679–1685

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1983) Sharp vibration maximum in the cochlea without wave reflection. Hear Res 9:103–111

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Feldman AS (1963) Post-mortem acoustic impedance of human ears. J Acoust Soc Am 35:104–107

    Google Scholar 

  • Zwislocki JJ, Feldman AS (1970) Acoustic impedance of pathological ears, ASH A monograph 15. American Speech and Hearing Association, Washington, DC

    Google Scholar 

  • Zwislocki JJ, Kletsky EJ (1982) What basilar-membrane tuning says about cochlear micromechanics. Am J Otolaryngol 3:48–52

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zwislocki, J.J. (1984). Biophysics of the Mammalian Ear. In: Dawson, W.W., Enoch, J.M. (eds) Foundations of Sensory Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69425-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69425-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69427-1

  • Online ISBN: 978-3-642-69425-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics