Skip to main content

Comparative Physiology of Invertebrates: Hearing and Vision

  • Chapter
Foundations of Sensory Science

Abstract

When my interest in biology began, the discipline was not defined (as it usually is in our excellent modern textbooks) as the science of “the natural bodies which possess nucleic acids and proteins, and which are capable of synthesizing such molecules by themselves.” In the Berlin vernacular — quick-tongued as a Berliner is — the plain retort would have been, “Right you are, but all the same it’s just boloney.” And later, I never asked myself whether the living processes which interested me took place in “natural bodies of proteins and nucleic acids.” When I was a student, it was the Protista which fascinated me, and I built my own microscope to study them. In 1923, I also assembled a radio which had a crystal as the rectifier. At that time, it was still forbidden to build a radio, but one could buy a book, written anonymously and entitled How the American Hobbyist Builds a Radio by Himself. Here were the roots of my two later interests; delight in studying living animals and delight in building instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Names Containing von are alphabetized in this list under v

  • Autrum H (1936a) Eine Theorie der Schall Wahrnehmung für Luftarthropoden. Verh Dtsch Zool Ges 1936:125–134

    Google Scholar 

  • Autrum H (1936b) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. I. Untersuchungen bei Ameisen. Eine allgemeine Theorie der Schallwahrnehmung bei Arthropoden. Z Vgl Physiol 23:332–373

    Google Scholar 

  • Autrum H (1940) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vgl Physiol 28:326–352

    Google Scholar 

  • Autrum H (1941) Über Gehör und Erschütterungssinn bei Locustiden. Z Vgl Physiol 28:580–637

    Google Scholar 

  • Autrum H (1942) Schallempfang bei Tier und Mensch. Naturwissenschaften 30:69–85

    Google Scholar 

  • Autrum H (1943) Über kleinste Reize bei Sinnesorganen. Biol Zentralbl 63:209–236

    Google Scholar 

  • Autrum H (1948a) Über das zeitliche Auflösungsvermögen des Insektenauges. Nachr Akad Wiss Göttingen Math-Phys Kl 2:8–12

    Google Scholar 

  • Autrum H (1948b) Zur Analyse des zeitlichen Auflösungsvermögens des Insektenauges. Nachr Akad Wiss Göttingen Math-Phys Kl 2:13–18

    Google Scholar 

  • Autrum H (1950) Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus). Z Vgl Physiol 32:176–227

    Google Scholar 

  • Autrum H (1958) Electrophysiological analysis of the visual system in insects. Exp Cell Res [Suppl] 5:426–439

    Google Scholar 

  • Autrum H (1968) Colour vision in man and animals. Naturwissenschaften 55:10–18

    PubMed  CAS  Google Scholar 

  • Autrum H (ed) (1979–1981) Vision in invertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vols VII/6A, B, and C)

    Google Scholar 

  • Autrum H (1981) Light and dark adaptation in invertebrates. In: Autrum H (ed) Invertebrate visual centers and behavior II. Springer, Berlin Heidelberg New York, pp 1–91 (Handbook of sensory physiology, vol VII/6C)

    Google Scholar 

  • Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z Vgl Physiol 31:77–88

    PubMed  CAS  Google Scholar 

  • Autrum H, Stumpf H (1950) Das Bienenauge als Analysator für polarisiertes Licht. Z Naturforsch [B] 5:116–122

    Google Scholar 

  • Autrum H, Thomas I (1973) Comparative physiology of colour vision in animals. In: R. Jung (ed) Integrative functions and comparative data. Springer, Berlin Heidelberg New York, pp 661–692 (Handbook of sensory physiology, vol VII/3A)

    Google Scholar 

  • Autrum H, von Zwehl V (1962) Zur spektralen Empfindlichkeit einzelner Sehzellen der Drohne (Apis mellifica♂). Z Vgl Physiol 46:8–12

    Google Scholar 

  • Autrum H, von Zwehl V (1963) Ein Grünrezeptor im Drohnenauge (Apis mellifica♂). Naturwissenschaften 50:698

    Google Scholar 

  • Autrum H, von Zwehl V (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vgl Physiol 48:357–384

    Google Scholar 

  • Autrum H, Wiedemann I (1962) Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z Naturforsch [B] 17:480–182

    Google Scholar 

  • Brakenberg V (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res 3:271–298

    Google Scholar 

  • Brown PK, Wald G (1963) Visual pigments in human and monkey retinas. Nature 200:37- 43

    PubMed  CAS  Google Scholar 

  • Brown PK, Wald G (1964) Visual pigments in single rods and cones of the human retina. Science 144:45–52

    PubMed  CAS  Google Scholar 

  • Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16:86–108

    Google Scholar 

  • Burkhardt D (1964) Colour discrimination in insects. Adv Insect Physiol 2:131–203

    CAS  Google Scholar 

  • Dambach M, Huber F (1974) Perception of substrate vibration in crickets. In: Schwartz- kopff J (ed) Symposium mechanoreception. Abh Rheinisch-Westfäl Akad Wiss 53:263- 280

    Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchung des Farbensehens der Biene. Z Vgl Physiol 38:413–478

    Google Scholar 

  • Dragsten PR, Webb WW, Paton JA, Capranica RR (1974) Auditory membrane vibrations: measurements at sub-angstrom levels by optical heterodyne spectroscopy. Science 185:55–57

    PubMed  CAS  Google Scholar 

  • Eggers F (1928) Die stiftführenden Sinnesorgane. Zoologische Bausteine, vol 2/1. Gebr. Bornträger, Berlin

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig

    Google Scholar 

  • Fletcher WH (1978) Acoustic response of hair receptors in insects. J Comp Physiol 127:185- 189

    Google Scholar 

  • Gouras P, Zrenner E (1981) Color vision: a review from a neurophysiological perspective. Prog Sensory Physiol 1:139–179

    Google Scholar 

  • Graber V (1875) Die tympanalen Sinnesapparate der Orthopteren. Denkschr Wiss Akad Wien 36:1–140

    Google Scholar 

  • Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York, pp 145–224 (Handbook of sensory physiology, vol VII/6A)

    Google Scholar 

  • Hesse R (1896) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. I. Die Organe der Lichtempfmdung bei den Lumbriciden. Z Wiss Zool 61:393–119

    Google Scholar 

  • Hesse R (1897a) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. II. Die Augen der Plathelminthen. Z Wiss Zool 62:527–582

    Google Scholar 

  • Hesse R (1897b) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. III. Die Sehorgane der Hirudineen. Z Wiss Zool 62:671–707

    Google Scholar 

  • Hesse R (1899) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. V. Die Augen der polychaeten Anneliden. Z Wiss Zool 65:446–516

    Google Scholar 

  • Horridge GA (ed) (1975) The compound eye and vision of insects. Clarendon, Oxford

    Google Scholar 

  • Horridge GA, Meinertzhagen IA (1970) The exact neural projections of the visual fields upon the first and second ganglia of the insect eye. Z Vgl Physiol 66:369–378

    Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3:248–270

    PubMed  CAS  Google Scholar 

  • Kirschfeld K (1969) Optics of the compound eye. In: Reichardt W (ed) Processing of optical data by organisms and by machines. Academic, New York, pp 144–166

    Google Scholar 

  • Kirschfeld K (1976) The resolution of lens and compound eyes. In: Zettler F, Weiler R (eds) Neural principles in vision. Springer, Berlin Heidelberg New York, pp 355–370

    Google Scholar 

  • Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22

    PubMed  CAS  Google Scholar 

  • Kretz R (1979) A behavioural analysis of colour vision in the ant Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 131:217–233

    Google Scholar 

  • Kühn A (1927) Über den Farbensinn der Bienen. Z Vgl Physiol 5:762–800

    Google Scholar 

  • Kuiper JW (1962) The optics of the compound eye. Symp Soc Exp Biol 16:58–71

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Invertebrate visual centers and behavior I. Springer, Berlin Heidelberg New York, pp 471–592 (Handbook of sensory physiology, vol VII/6B)

    Google Scholar 

  • Langer H, Hamann B, Meinecke CC (1979) Tetrachromatic visual system in the moth Spodoptera exempta (Insecta: Noctuidae). J Comp Physiol 129:235–239

    Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Invertebrate visual centers and behavior I. Springer, Berlin Heidelberg New York, pp 133–280 (Handbook of sensory physiology, vol VII/6B)

    Google Scholar 

  • Lewis DB (1974a) The physiology of the tettigoniid ear. I. The implications of the anatomy of the ear to its function in sound reception. J Exp Biol 60:821–837

    PubMed  CAS  Google Scholar 

  • Lewis DB (1974b) The physiology of the tettigoniid ear. II. The response characteristics of the ear to differential inputs: lesion and blocking experiments. J Exp Biol 60:839–851

    PubMed  CAS  Google Scholar 

  • Lewis DB (1974c) The physiology of the tettigoniid ear. III. The response characteristics of the intact ear and some biophysical considerations. J Exp Biol 60:853–859

    PubMed  CAS  Google Scholar 

  • Lewis DB (1974d) The physiology of the tettigoniid ear. IV. A new hypothesis for acoustic orientation behavior. J Exp Biol 60:861–869

    PubMed  CAS  Google Scholar 

  • Little HF (1962) Reactions of the honeybee Apis mellifera L. to artificial sounds and vibrations of known frequencies. Ann Entomol Soc Am 55:82–89

    Google Scholar 

  • MacNichol EF Jr (1964) Retinal mechanisms of colour vision. Vision Res 4:119–133

    PubMed  Google Scholar 

  • Markl H (1970) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. III. Die Empfindlichkeit für Substratvibrationen. Z Vgl Physiol 69:6–37

    Google Scholar 

  • Markl H (1973) Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschr Zool 21:100–120

    PubMed  CAS  Google Scholar 

  • Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movements in a sound field. J Comp Physiol 99:79–87

    Google Scholar 

  • Marks WB (1963) Difference spectra of the visual pigment in single goldfish cones. PhD dissertation, Johns Hopkins University, Baltimore

    Google Scholar 

  • Marks WB (1965) Visual pigments of single goldfish cones. J Physiol 178:14–32

    PubMed  CAS  Google Scholar 

  • Marks WB, Dobelle WH, MacNichol FF Jr (1964) Visual pigments of single primate cones. Science 143:1181–1183

    PubMed  CAS  Google Scholar 

  • Marriott FHC (1962) Colour vision: theories. In: Davson H (ed) The eye, vol 2. Academic, New York, pp 299–320

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York, pp 503–580 (Handbook of sensory physiology, vol VII/6A)

    Google Scholar 

  • Michelsen A (1973) The mechanics of the locust ear: an invertebrate frequency analyzer. In: Møller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 911–931

    Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory ecology. Plenum, New York, pp 345–373

    Google Scholar 

  • Michelsen A (1979) Insect ears as mechanical systems. Am Sci 67:696–706

    Google Scholar 

  • Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203

    Google Scholar 

  • Michelsen A, Nocke H (1974) Biophysical aspects of sound communication in insects. Adv Insect Physiol 10:247–296

    Google Scholar 

  • Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York, pp 69–143 (Handbook of sensory physiology, volVII/6A)

    Google Scholar 

  • Minnich DE (1925) The reactions of the larvae of Vanessa antiopa Linn, to sounds. J Exp Zool 42:443–469

    Google Scholar 

  • Müller A (1966) Über die Abhängigkeit von Retinogrammform und Verschmelzungsfrequenz bei Insekten. Dissertation, University of Würzburg

    Google Scholar 

  • Müller J (1826) Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere nebst einem Versuch über die Bewegungen der Augen und über den menschlichen Blick. Cnobloch, Leipzig

    Google Scholar 

  • Nocke H (1975) Physical and physiological properties of the tettigoniid (“grasshopper”) ear. J Comp Physiol 100:25–57

    Google Scholar 

  • Popper AN, Fay RR (eds) (1980) Comparative studies of hearing in vertebrates. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Regen J (1914) Untersuchungen über die Stridulation und das Gehör von Thamnotrizon apterus Fab. Sitzgsber Akad Wiss Wien Math Naturwiss Kl Abt 1 123:853–892

    Google Scholar 

  • Regen J (1926) Über die Beeinflussung des Stridulierens von Thamnotrizon apterus Fab. ♂ durch künstlich erzeugte Töne und verschiedenartige Geräusche. Sitzgsber Akad Wiss Wien Math Naturwiss Kl Abt 1 135:329–368

    Google Scholar 

  • Schneider W (1950) Über den Erschütterungssinn von Käfern und Fliegen. Z Vgl Physiol 32:287–302

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Vibrationsschwellen. Z Vgl Physiol 71:14–48

    Google Scholar 

  • Schumacher R (1973) Beitrag zur Kenntnis des tibialen Tympanalorgans von Tettigonia viridissima L. (Orthoptera: Tettigoniidae). Mikroskopie 29:8–19

    PubMed  CAS  Google Scholar 

  • Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica Heft 50

    Google Scholar 

  • Schwartzkopff J (1974) Mechanoreception. In: Rockstein M (ed) The physiology of insecta. Academic, New York, pp 273–352

    Google Scholar 

  • Smola U, Gemperlein R (1973) Rezeptorrauschen und Informationskapazität der Sehzellen von Calliphora erythroeephala und Periplaneta americana. J Comp Physiol 87:393–404

    Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol 116:161–182

    Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York, pp 225–313 (Handbook of sensory physiology, vol VII/6A)

    Google Scholar 

  • Srinivasan MV, Bernard GD (1975) The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Res 15:515–525

    PubMed  CAS  Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York, pp 357–439 (Handbook of sensory physiology, vol VII/6A)

    Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9:8 ff

    Google Scholar 

  • Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I. Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31

    Google Scholar 

  • Tautz J (1978) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. II. Response characteristics of the sensory cell. J Comp Physiol 125:67–77

    Google Scholar 

  • Tomita T, Kaneko A, Murakami M, Pautler EL (1967) Spectral response curves of single cones in the carp. Vision Res 7:519–531

    PubMed  CAS  Google Scholar 

  • Trendelenburg F (1939) Einführung in die Akustik. Springer, Berlin

    Google Scholar 

  • Trujillo-Cenöz O, Melamed J (1966) Compound eye of dipterans: anatomical basis for integration, an electron microscope study. J Ultrastr Res 16:395–398

    Google Scholar 

  • von Békésy G (1941) Über die Messung der Schwingungsamplitude der Gehörknöchelchen mittels einer kapazitiven Sonde. Akust Z 6:1–15

    Google Scholar 

  • von Frisch K (1914) Demonstration von Versuchen zum Nachweis des Farbensinnes bei angeblich total farbenblinden Tieren. Verh Dtsch Zool Ges 1914:50–58

    Google Scholar 

  • von Frisch K (1914–1915) Der Farbensinn und Formensinn der Bienen. Zool Jahrb Abt Allg Zool Physiol Tiere 35:1–188

    Google Scholar 

  • von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    PubMed  CAS  Google Scholar 

  • von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • von Siebold CTF (1844) Über das Stimm- und Gehörorgan der Orthopteren. Arch Naturgesch 10:71–86

    Google Scholar 

  • Walcott C, van der Kloot WG (1959) The physiology of the spider vibration receptor. J Exp Zool 141:191–244

    Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Invertebrate visual centers and behavior I. Springer, Berlin Heidelberg New York, pp 281–169 (Handbook of sensory physiology, vol VII/6B)

    Google Scholar 

  • Weale RA (1957) Trichromatic ideas in the seventeenth and eighteenth centuries. Nature 179:648–651

    PubMed  CAS  Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Invertebrate visual centers and behavior II. Springer, Berlin Heidelberg New York, pp 287–616 (Handbook of sensory physiology, vol VII/6C)

    Google Scholar 

  • Wever EG, Bray CW (1933) A new method for the study of hearing in insects. J Cell Comp Physiol 4:79–93

    Google Scholar 

  • Wiedemann I (1965) Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z Vgl Physiol 49:526–542

    Google Scholar 

  • Yamashita S, Tateda H (1976) Spectral sensitivities of jumping spider eyes. J Comp Physiol 105:29–41

    Google Scholar 

  • Zettler F (1969) Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand, gemessen am einzelnen Lichtrezeptor von Calliphora erythrocephala. Z Vgl Physiol 64:432–449

    Google Scholar 

  • Zettler F, Weiler R (eds) (1976) Neural principles in vision. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Autrum, H. (1984). Comparative Physiology of Invertebrates: Hearing and Vision. In: Dawson, W.W., Enoch, J.M. (eds) Foundations of Sensory Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69425-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69425-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69427-1

  • Online ISBN: 978-3-642-69425-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics