Skip to main content

A Multi-Electrode Matrix for Studies of Temporal Signal Correlations Within Neural Assemblies

  • Conference paper
Synergetics of the Brain

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 23))

Abstract

The ability of biological sensory systems to recognize entities or patterns in the presence of background patterns, noise, masking, and in spite of an almost unlimited number of possible variations within a patterns class, greatly surpasses the performance of existing general-purpose computer-based pattern recognition systems. The human visual system, for example, enables us to recognize a complex pattern, such as a tree, as a well-defined entity — even if the tree is seen against a background of other trees. It is as if each part of the object had been “labeled” such that the whole pattern is perceived as an entity. A possible and efficient mechanism for such labeling, i. e. for the linking of regions and attributes that define the pattern, could be based on temporal signal correlations; this means that a certain fraction of the total number of action potentials in a given channel would be coherent (synchronous or having a constant phase lag) with part of the action potentials in other channels that belong to the same neural assembly encoding the pattern. A particular attraction of this scheme is that the pattern and its attributes can be easily separated from the background or from other patterns via an array of “synchronous switches”. An array of neurons whose threshold is modulated accordingly can thus act as a pattern filter1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Reitboeck and T. P. Brody, Inform. Contr. 15, 130 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Burkhardt and X. Müller, IEEE Trans. Acoust., Speech, Signal Processing ASSP-28, 5, 517 (1980)

    Article  Google Scholar 

  3. M. D. Wagh and S. V. Kanetkar, IEEE Trans. Acoust. , Speech, Signal Processing ASSP-25, 203 (1977)

    Google Scholar 

  4. G. West and H. J. Reitboeck, Elektr. Informationsverarbeitung und Kybernetik 15, 10, 507 (1979)

    Google Scholar 

  5. W. Reichardt, in H. Haken, Pattern Formation by Dynamic Systems and Pattern Recognition, Springer-Verlag, Berlin, Heidelberg, New York 1979

    Google Scholar 

  6. H. J. Reitboeck, in H. Spangenberg, Ein Mustererkennungssystem, das gleichzeitig Analysen im Bildbereich und im Bereich der räumlichen Frequenzen durchführt, M. S. Thesis, Marburg 1982

    Google Scholar 

  7. L. Altmann, Psychophysische Untersuchungen zur Rolle der Synchronität bei der Mustererkennung mit Hilfe einer mikroprozessorges teuerten LED-Matrix, M. S. Thesis, Marburg 1982

    Google Scholar 

  8. H. Peter, Pitchdetektor mit hoher Frequenz- und Zeitgenauigkeit, M. S. Thesis, Marburg 1983

    Google Scholar 

  9. R. Spikermann, Schallquellenseparierüng durch Analyse im Frequenz- und Zeitbereich, M. S. Thesis, Marburg 1983

    Google Scholar 

  10. V. B. Mountcastle, In: J. Eccles, Brain and Conscious Experience, Springer-Verlag, New York 1966

    Google Scholar 

  11. K. S. Lashley, Brain Mechanisms and Intelligence, Univ. of Chicago Press, Chicago 1929

    Book  Google Scholar 

  12. W. Köhler, Dynamics in Psychology, Grove Press, New York 1940

    Google Scholar 

  13. E. C. Tolman, Psych. Reviews 55, 189 (1948)

    Article  Google Scholar 

  14. J. C. Lilly and R. B. Cherry, J. Neurophysiol. 17, 521 (1954)

    Google Scholar 

  15. B. G. Cragg and H. N. V. Temperley, Electroenceph. and Clin. Neurophys. 6, 85 (1954)

    Article  Google Scholar 

  16. J. C. Eccles, Sci. Amer. 199, 135 (1958)

    Article  Google Scholar 

  17. J. C. Eccles, Facing Reality, Springer-Verlag, Berlin, Heidelberg, New York 1970

    Google Scholar 

  18. R. W. Gerard, in J. Field, H. W. Magoun and V. E. Hall, Handbook of Physiology, Washington 1960

    Google Scholar 

  19. E. R. John, Mechanisms of Memory, Academic Press, New York 1967

    Google Scholar 

  20. K. H. Pribam, Languages of the Brain, Englewood Cliffs, Prentice Hall, New Jersey 1971

    Google Scholar 

  21. S. Grossberg, Progr. Theoret. Biol. 3, 51 (1974)

    Google Scholar 

  22. J. von Neumann, The Computer and the Brain, Yale Univ. Press, New Haven, Connecticut 1958

    MATH  Google Scholar 

  23. R. L. Beurle, Transact. Royal Soc. (London) 240, 55 (1956)

    Article  Google Scholar 

  24. J. S. Griffith, Biophys. J. 3, 299 (1963)

    Article  MathSciNet  Google Scholar 

  25. H. R. Wilson and J. D. Cowan, Biophys. J. 12, 1 (1972)

    Article  ADS  Google Scholar 

  26. W. J. Freeman, Mass Action in the Nervous System, Academic Press, New York 1975

    Google Scholar 

  27. D. O. Hebb, The Organization of Behavior; A Neuropsychological Theory, Wiley, New York 1949

    Google Scholar 

  28. C. R. Legendy, Math. Biosci. 1, 555 (1967)

    Article  Google Scholar 

  29. C. R. Legendy, In: H. L. Oestreicher and D. R. Moore, Cybernetic Problems in Bionics, Gordon and Breach, New York 1968

    Google Scholar 

  30. V. Braitenberg, In: R. Heim and G. Palm, Theoretical Approaches to Complex Systems, Springer-Verlag, Berlin, Heidelberg, New York 1978

    Google Scholar 

  31. G. Palm and V. Braitenberg, In: R. Trappl, G. J. Klir, L. Ricciardi, Progress in Cybernetics and Systems Research, Advance Publ. , London 1979

    Google Scholar 

  32. G. Palm, Biol. Cybern. 39, 181 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Szentágothai, Brain Res. 95, 475 (1975)

    Article  Google Scholar 

  34. D. H. Perkel, G. L. Gerstein and G. P. Moore, Biophys. J. 7, 4, 414 (1967)

    Google Scholar 

  35. G. L. Gerstein, In: F. O. Schmitt, The Neuroscience, Second Study Program, Rockefeller University Press, New York 1970

    Google Scholar 

  36. E. M. Glaser and D. S. Ruchkin, Principles of Neurobiological Signal Analysis, Academic Press, New York 1976

    Google Scholar 

  37. K. D. Wise, J. B. Angell and A. Starr, IEEE Trans. Biomed. Eng. 17, 238 (1970)

    Article  Google Scholar 

  38. G. W. Gross, E. Rieske, G. W. Kreutzberg and A. Meyer, Neurosci. Lett. 6, 101 (1977)

    Article  Google Scholar 

  39. M. Kuperstein and D. Whittington, Soc. Neurosci. 5, 495 (1979)

    Google Scholar 

  40. O. Prohaska, F. Pacha, P. Pfundner and H. Petsche, Electroenceph. Clin. Neurophysiol. 47, 629 (1979)

    Article  Google Scholar 

  41. J. Krüger and M. Bach, Exp. Brain Res. 41, 191 (1981)

    Article  Google Scholar 

  42. T. Radil-Weiss and J. Skvaril, Electroenceph. Clin. Neurophysiol. 30, 571 (1971)

    Article  Google Scholar 

  43. W. M. Kozak and H. J. Reitboeck, Vis. Res. 14, 405 (1974)

    Article  Google Scholar 

  44. H. J. Reitboeck, J. Neurosc. Meth. , in press (August 1983)

    Google Scholar 

  45. G. Werner and H. J. Reitboeck, Report to N. S. F. , unpublished, 1976

    Google Scholar 

  46. H. J. Reitboeck and G. Werner, Experientia 39, 339 (1983)

    Article  Google Scholar 

  47. H. J. Reitboeck, W. Adamczak, R. Eckhorn, P. Muth, R. Thielmann and U. Thomas, Neuroscience Letters 7, 148 (1981)

    Google Scholar 

  48. G. Werner and B. Whitsel, J. Neurophysiol. 31, 856 (1968)

    Google Scholar 

  49. C. Habbel and R. Eckhorn, Neuroscience Letters 7, 149 (1981)

    Google Scholar 

  50. J. Schneider, R. Eckhorn and H. Reitboeck, Biol. Cybern. 46, 129 (1983)

    Article  Google Scholar 

  51. R. Eckhorn and J. Schneider, unpublished results

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reitboeck, H.J. (1983). A Multi-Electrode Matrix for Studies of Temporal Signal Correlations Within Neural Assemblies. In: Başar, E., Flohr, H., Haken, H., Mandell, A.J. (eds) Synergetics of the Brain. Springer Series in Synergetics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69421-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69421-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69423-3

  • Online ISBN: 978-3-642-69421-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics