Advertisement

Gradual and Abrupt Shifts in Ocean Chemistry During Phanerozoic Time

  • W. T. Holser
Part of the Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports book series (DAHLEM, volume 5)

Abstract

The clearest records of changes in chemistry of the exogenic cycle are found in mineral inventories (NaCl, CaSO4, Ccarb, Corg, P), isotope ratios (δ34Ssft, δ13Ccarb, 87Sr/86Srcarb,87Sr/86Srapt), 87Sr/86Srapt), and trace elements (Ce/Laaptand heavy metals in black shales) vs. age. While these variations can be simplistically modelled in the long-term to confine all variations to the larger sedimentary reservoirs, there are several reasons to assert that some of the variability is internal to the smaller oceanic (and atmospheric) reservoirs, especially for short-term events. These are controlled by complex feedback loops, perhaps ultimately forced by plate-tectonic activity cycles. Many links are only speculative.

Keywords

Black Shale Strontium Isotope Abrupt Shift Anoxic Event Ocean Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Arthur, M.A. 1979. Paleoceanographic events - recognition, resolution, and reconsideration. Rev. Geophys. Space Phys. 17: 1474–1494.CrossRefGoogle Scholar
  2. (2).
    Arthur, M.A. 1982. The carbon cycle: Controls on atmospheric CO2 and climate in the geologic past. InClimate in Earth History, eds. W.H. Berger and J.C. Crowell, pp. 55 – 87. Washington: National Academy Press.Google Scholar
  3. (3).
    Arthur, M.A., and Jenkyns, H.C. 1981. Phosphorites and paleoceanography. Ocean. Acta SP: 83 – 96.Google Scholar
  4. (4).
    Berger, W.H. 1982. Deep-sea stratigraphy: Cenozoic climate steps and the search for chemo-climatic feedback. InCyclic and Event Stratification, eds. G. Einsele and A. Seilacher, pp. 121 – 157. Berlin: Springer-Verlag.Google Scholar
  5. (5).
    Berner, R.A., and Raiswell, R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochim. Cosmochim. Acta 47: 855 – 862.Google Scholar
  6. (6).
    Berry, W.B.N., and Wilde, P. 1978. Progressive ventilation of the oceans - an explanation for the distribution of the lower Paleozoic black shales. Am. J. Sci. 278: 257 – 275.Google Scholar
  7. (7).
    Bolin, B.; Degens, E.T.; Kempe, S.; and Ketner, P., eds. 1979. The Global Carbon Cycle- New York: John Wiley and Sons.Google Scholar
  8. (8).
    Brass, G.W.; Southam, J.R.; and Peterson, W.H. 1982. Warm saline bottom water in the ancient ocean. Nature 296: 620 – 623.CrossRefGoogle Scholar
  9. (9).
    Broecker, W.S. 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46: 1689 – 1705.CrossRefGoogle Scholar
  10. (10).
    Budyko, M.I., and Ronov, A.B. 1979. Chemical evolution of the atmosphere in the Phanerozoic. Geokhimiya 5s 643–653 (transi. Geochim. Internat. 16(3): 1 – 9 ).Google Scholar
  11. (11).
    Burke, W.H.; Denison, R.E.; Heatherington, E.A.; Koepnick, R.B.; Nelson, H.F.; and Otto, J.B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10: 516 – 519.Google Scholar
  12. (12).
    Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; and Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28: 199 – 260.Google Scholar
  13. (13).
    Claypool, G.C.; Leventhal, J.S.; and Goldhaber, M.B. 1980. Geochemical effects of early diagenesis of organic matter and sulfur in Devonian black shales, Appalachian Basin. Abstract. Am. Ass. Petrol Geol. Bull. 64: 692.Google Scholar
  14. (14).
    Cook, P.J., and McElhinny, M.W. 1979. A réévaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol. 74: 315 – 330.Google Scholar
  15. (15).
    Edmond, J.M.; Measures, C.; McDuff, R.E.; Chan, L.H.; Collier, R.; Grant, B.; Gordon, L.I.; and Corliss, J.B. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos Rift. Earth Planet. Sei. Lett. 46: 1 – 18.Google Scholar
  16. (16).
    Faure, G. 1977. Isotope Geology. New York: John Wiley and Sons.Google Scholar
  17. (17).
    Fischer, A.G. 1982. Longterm climatic oscillations recorded in stratigraphy. InClimate in Earth History, eds. W.H. Berger and J.C. Crowell, pp. 97 – 103. Washington: National Academy Press.Google Scholar
  18. (18).
    Garrels, R.M., and Lerman, A. 1981. Phanerozoic cycles of sedimentary carbon and sulfur. Proc. Natl. Acad. Sei. USA 18: 4652– 4656.Google Scholar
  19. (19).
    Garrels, R.M., and Perry, E.A. 1974. Cycling of carbon, sulfur, and oxygen through geologic time. InThe Sea, ed. E.D. Goldberg, vol. 5, pp. 303 – 336. New York: John Wiley and Sons.Google Scholar
  20. (20).
    Graham, D.W.; Bender, M.L.; Williams, D.F.; and Keigwin, Jr., L.D. 1982. Strontium-calcium ratios in Cenozoic planktonic foraminifera. Geochim. Cosmochim. Acta 46: 1281 – 1292.Google Scholar
  21. (21).
    Gregor, C.B., ed. 1984. Chemical Cycles in the Evolution of the Earth. New York: John Wiley and Sons, in press.Google Scholar
  22. (22).
    Haq, B.U. 1981. Paleogene paleoceanography: Early Cenozoic oceans revisited. Oceanol. Acta SP; 71–82.Google Scholar
  23. (23).
    Hoefs, J. 1981. Isotopic composition of the ocean-atmosphere system in the geologic past. Am. Geophys. Union Geodynam. Ser. 5: 110–118.Google Scholar
  24. (24).
    Holland, H.D. 1974. Marine evaporites and the composition of seawater during the Phanerozoic. Soc. Econ. Paleontol. Mineral. Spec. Paper 20: 187 – 192.Google Scholar
  25. (25).
    Holland, H.D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press, in press.Google Scholar
  26. (26).
    Holser, W.T.; Hay, W.W.; Jory, D.E.; and O’Connell, W.J. 1980. A census of evaporites and its implications for oceanic geochemistry. Abstract. Geol. Soc. Am. Abstr. Progr. 12: 449.Google Scholar
  27. (27).
    Holser, W.T.; Kaplan, I.R.; Sakai, H.; and Zak, I. 1979. Isotope geochemistry of oxygen in the sedimentary sulfate cycle. Chem. Geol. 25: 1 – 17.CrossRefGoogle Scholar
  28. (28).
    Imbrie, J., and Imbrie, J.Z. 1980. Modelling the climatic response to orbital variations. Science 207: 943 – 953.CrossRefGoogle Scholar
  29. (29).
    Kennett, J.P. 1982. Marine Geology. Englewood Cliffs: Prentice Hall.Google Scholar
  30. (30).
    Keith, M.L. 1982. Violent volcanism, stagnant oceans and some inferences regarding petroleum, strata-bound ores and mass extinctions. Geochim. Cosmochim. Acta 46: 2621 – 2637.CrossRefGoogle Scholar
  31. (31).
    Kovach, J. 1980. Variations in the strontium isotope composition of seawater during Paleozoic time determined by analysis of conodonts. Abstract. Geol. Soc. Am. Abstr. Progr. 12: 465.Google Scholar
  32. (32).
    Lantzy, R.J.; Dacey, M.F.; and Mackenzie, F.T. 1977. Catastrophe theory: Application to the Permian mass extinction. Geology 5: 724 – 728.CrossRefGoogle Scholar
  33. (33).
    Leventhal, J.S. 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta 47: 133 – 137.CrossRefGoogle Scholar
  34. (34).
    Mackenzie, F.T., and Pigott, J.D. 1981. Tectonic controls of Phanerozoic sedimentary rock cycling. J. Geol. Soc. Lond. 138: 183 – 196.CrossRefGoogle Scholar
  35. (35).
    Magaritz, M.; Anderson, R.Y.; Holser, W.T.; Saltzman, E.S.; and Garber, J. 1984. Isotope shifts in the Late Permian of the Delaware Basin, Texas, precisely timed by varved sediments. Earth Planet. Sci. Lett., in press.Google Scholar
  36. (36).
    Magaritz, M., and Turner, P. 1982. Carbon cycle changes in the Zechstein Sea: isotopic transition zone in the Marl Slate. Nature 297: 389 – 390.CrossRefGoogle Scholar
  37. (37).
    Roth, P.H., and Bowdler, J.L. 1981. Middle Cretaceous calcareous nannoplankton biography and oceanography of the Atlantic Ocean. Soc. Expl. Paleontol. Mineral. Spec. Publ. 32: 517 – 546.Google Scholar
  38. (38).
    Saltzman, E.S.; Lindh, T.B.; and Holser, W.T. 1982. ¿13C and S34S, global sedimentation, pO2 and pCO2 during the Phanerozoic. Abstract. Geol. Soc. Am. Abstr. Progr. 14: 607.Google Scholar
  39. (39).
    Savin, S.M., and Yeh, H.W. 1981. Stable isotopes in ocean sediments. In The Oceanic Lithosphere, ed. C. Emiliani, pp. 1521 – 1554. New York: John Wiley-Interscience.Google Scholar
  40. (40).
    Schidlowski, M. 1982. Content and isotopic composition of reduced carbon in sediments. Phys. Chem. Sci. Rep. 1982 3: 103 – 122.Google Scholar
  41. (41).
    Schidlowski, M., and Junge, C.E. 1981. Coupling among the terrestrial sulfur, carbon and oxygen cycles: Numerical modeling based on revised Phanerozoic carbon isotope record. Geochim. Cosmochim. Acta 45: 589 – 594.CrossRefGoogle Scholar
  42. (42).
    Scholle, P.A., and Arthur, M.A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Am. Ass. Petrol. Geol. Bull 64: 67 – 87.Google Scholar
  43. (43).
    Southam, J.R., and Hay, W.W. 1981. Global sedimentary mass balance and sea level changes. InThe Oceanic Lithosphere, ed. C. Emiliani, pp. 1616 – 1684. New York: Wiley-Interscience.Google Scholar
  44. (44).
    Southam, J.R.; Peterson, W.H.; and Brass, G.W. 1982. Dynamics of anoxia. Paleogeo. P. 40: 183 – 198.CrossRefGoogle Scholar
  45. (45).
    Stevens, C.H. 1977. Was development of brackish oceans a factor in Permian extinctions ? Geol. Soc. Am. Bull. 88: 133 – 138.CrossRefGoogle Scholar
  46. (46).
    Thierstein, H.R., and Berger, W.H. 1977. Injection events in ocean history. Nature 276: 461 – 466.CrossRefGoogle Scholar
  47. (47).
    Vail, P.R., and Mitchum, Jr., R.M. 1979. Global cycles of relative changes of sea level from seismic stratigraphy. Am. Ass. Petrol. Geol. Mem. 29: 469 – 472.Google Scholar
  48. (48).
    Veizer, J. 1978. Secular variations in the composition of sedimentary carbonate rocks, II. Fe, Mn, Ca, Mg, Si and minor constituents. Precambrian Res. 6: 381 – 413.CrossRefGoogle Scholar
  49. (49).
    Veizer. J.; Holser, W.T.; and Wilgus, C.K. 1980. Correlation of 13C/12C and 34S/32S secular variations. Geochim. Cosmochim. Acta 44: 579–587.CrossRefGoogle Scholar
  50. (50).
    Weaver, C.E. 1967. Potassium, illite and the ocean. Geochim. Cosmochim. Acta 31: 2181 – 2196.CrossRefGoogle Scholar
  51. (51).
    Wilde, P., and Berry, W.B.N. 1982. Progressive ventilation of the oceans - potential for return to anoxic conditions in the post-Paleozoic. In Nature and Origin of Cretaceous Carbon-rich Facies, eds. S.O. Schlanger and M.G. Cita, pp. 209 – 224. New York: Academic Press.Google Scholar
  52. (52).
    Wright, J.; Seymour, R.S.; and Shaw, H.F. 1984. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geol. Soc. Am. Spec. Paper, in press.Google Scholar
  53. (53).
    Woodruff, F.; Savin, S.M.; and Douglas, R.G. 1981. Miocene stable isotope record: A detailed deep Pacific Ocean study and its paleoclimatic implications. Science 212: 665 – 668.CrossRefGoogle Scholar
  54. (54).
    Zharkov, M.A. 1981. History of Paleozoic Salt Accumulation. Berlin: Springer-Verlag.Google Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen 1984

Authors and Affiliations

  • W. T. Holser
    • 1
    • 2
  1. 1.Dept. of GeologyUniversity of OregonEugeneUSA
  2. 2.University of New MexicoAlbuquerqueUSA

Personalised recommendations