Skip to main content

Large Body Impacts Through Geologic Time

  • Conference paper
Patterns of Change in Earth Evolution

Part of the book series: Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports ((DAHLEM PHYSICAL,volume 5))

Abstract

The present collision rate between the Earth and asteroids ≥lkm diameter is estimated to be ~6 x 10-6yr-1; if intermediate albedo bodies predominate among the Earth-crossing asteroids, however, the collision rate might be as low as ~3 x 10-6yr-1. Asteroids ≥10 km diameter collide with the Earth with,an estimated frequency of ~2 x 10-8yr-l. The collision rate of comets is lower than that of asteroids; it is poorly known owing to uncertainties in our knowledge of the size of comet nuclei. The supply of 1 km diameter Earth-crossing asteroids derived from the fragmentation of main belt asteroids is steady within 25%. On the other hand, a surge in the collision of 10 km asteroids, involving perhaps as many as half a dozen bodies in ~5 x 107yr, may have occurred during the Phanerozoic. The flux of Earth-crossing comets probably varies about 1096 as the sun passes into and out of the spiral arms of the galaxy. Brief but intense comet storms probably have recurred about once every 108yr, as a consequence of close passages of stars near the sun. A long-term increase in the average number of extinct comets among the Earth-crossing asteroids could have resulted from slow recovery of the Oort comet cloud after encounter of the sun with a giant molecular cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L.W.; Alvarez, W.; Asaro, F.; and Michel, H.V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108.

    Article  Google Scholar 

  2. Alvarez, W.; Alvarez, L.W.; Asaro, F.; and Michel, H.V. 1982. Major impacts and their geological consequences. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth, eds. L.T. Silver and P.H. Schultz. Geol. Soc. Am. Spec. Paper 190: 305–316.

    Google Scholar 

  3. Asaro, F.; Alvarez, L.W.; Alvarez, W.; and Michel, H.V. 1982. Geochemical anomalies near the Eocene/Oligocene and Permian/Triassic boundaries. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth, eds. L.T. Silver and P.H. Schultz. Geol. Soc. Am. Spec. Paper 190: 517–528.

    Google Scholar 

  4. Bender, D.F. 1979. Osculating orbital elements of the asteroids. InAsteroids, ed. T. Gehrels, pp. 1014–1039. Tucson: University of Arizona Press.

    Google Scholar 

  5. Blitz, L.; Fich, M.; and Kulkarni, S. 1983. The New Milky Way. Science 220: 1233–1240.

    Article  Google Scholar 

  6. Clube, S.V.M., and Napier, W.M. 1982. Spiral arms, comets, and terrestrial catatrophism. Q. J. Roy. Astron. Soc. 23: 45–66.

    Google Scholar 

  7. Dietz, R.S. 1977. Elgygytgyn Crater, Siberia: a probable source of Australasian tektite fields (and bediasties from Popigai). Meteoritics 12: 145–157.

    Google Scholar 

  8. Emiliani, C.; Kraus, E.B.; and Shoemaker, E.M. 1981. Sudden death at the end of the Mesozoic. Earth Planet. Sci. Lett. 55: 317–334.

    Article  Google Scholar 

  9. Everhart, E. 1972. The origin of short period comets. Astrophys. Lett. 10: 131–135.

    Google Scholar 

  10. Everhart, E. 1977. The evolution of comet orbits as perturbed by Uranus and Neptune. InComets, Asteroids and Meteorites, ed. A.H. Delsemme, pp. 99–104. Toledo: University of Toledo Press.

    Google Scholar 

  11. Fernandez, J.A. 1980. Evolution of comet orbits under the perturbing influence of the giant planets and nearby stars. Icarus 42: 406– 421.

    Article  Google Scholar 

  12. Ganapathy, R. 1980. A major meteorite impact on the Earth 65 million years ago: Evidence from the Cretaceous/Tertiary boundary clay. Science 209: 921–923.

    Article  Google Scholar 

  13. Ganapathy, R. 1982. Evidence for a major meteorite impact on Earth 34 million years ago: Implication on the origin of North American tektites and Eocene extinction. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth, eds. L.T. Silver and P.H. Schultz. Geol. Soc. Am. Spec. Paper 190: 513–516.

    Google Scholar 

  14. Gradie, J.C.; Chapman, C.R.; and Williams, J.G. 1979. Families of minor planets. InThe Satellites of Jupiter, ed. D. Morrison, pp. 359–390. Tucson: University of Arizona Press.

    Google Scholar 

  15. Greenberg, R., and Scholl, H. 1979. Resonances in the asteroid belt. InAsteroids, ed. T. Gehrels, pp. 310–333. Tucson: University of Arizona Press.

    Google Scholar 

  16. Grieve, R.A.F. 1982. The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth, eds. L.T. Silver and P.H. Schultz. Geol. Soc. Am. Spec. Paper 190: 25–38.

    Google Scholar 

  17. Grieve, R.A.F., and Dence, M.R. 1979. The terrestrial cratering record II. The crater production rate. Icarus 38: 230–242.

    Article  Google Scholar 

  18. Grieve, R.A.F., and Robertson, P.B. 1979. The terrestrial cratering record. I. Current status of observations. Icarus 38; 212–229.

    Article  Google Scholar 

  19. Helin, E.F., and Shoemaker, E.M. 1979. Palomar planet-crossing asteroid survey, 1973–1978. Icarus 40: 321–328.

    Article  Google Scholar 

  20. Hills, J.G. 1981. Comet showers and the steady-state infall of comets from the Oort cloud. Astron. J. 86: 1730–1740.

    Article  Google Scholar 

  21. Kamoun, P.G.; Campbell, D.B.; Ostro, S.J.; Pettengill, G.H.; and Shapiro, I.I. 1981. Comet Encke: Radar detection of nucleus. Science 216: 293–295.

    Article  Google Scholar 

  22. Lin, C.C.; Yuan, C.; and Shu, F.H. 1969. On the spiral structure of disk galaxies - III. Comparison with observations. Astrophys. J. 155: 721–746.

    Article  Google Scholar 

  23. Marsden, B.G., and Roemer, E. 1982. Basic information and references. InComets, ed. L.L. Wilkening, pp. 707–733. Tucson: University of Arizona Press.

    Google Scholar 

  24. McFadden, L.A. 1983. Spectral reflectance of near-Earth asteroids: Implications for composition, origin, and evolution. Ph.D. Thesis, University of Hawaii, Honolulu.

    Google Scholar 

  25. Miller, G.E., and Scalo, J.M. 1979. The initial mass function and stellar birthrate in the solar neighborhood. Astrophys. J. Supp. Series 41: 513–547.

    Article  Google Scholar 

  26. Napier, W.M., and Clube, S.V.M. 1979. A theory of terrestrial catastrophism. Nature 282: 455–459.

    Article  Google Scholar 

  27. Napier, W.M., and Staniucha, M. 1982. Interstellar planetesimals - I. Dissipation of a primordial cloud of comets by tidal encounters with massive nebulae. Mon. Not. Roy. Astron. Soc. 198: 723–735.

    Google Scholar 

  28. Neukum, G.; König, B.; Fechtig, H.; and Storzer, D. 1975. Cratering in the Earth-Moon system: Consequences for age determination by crater counting. Proceedings of the VI Lunar Science Conference, vol. 2, pp. 2597–2620, Houston, Texas. Oxford: Pergamon Press.

    Google Scholar 

  29. Oort, J.H. 1950. The structure of the cloud of comets surrounding the solar system, and a hypothesis concerning its origin. Bull. Astron. Inst. Netherlands 11: 91–110.

    Google Scholar 

  30. Öpik, E.J. 1951. Collision probabilities with the planets and the distribution of interplanetry matter. Proc. Roy. Irish Acad. 54A: 165–199.

    Google Scholar 

  31. Öpik, E.J. 1963. The stray bodies in the solar system. Part I. Survivors of cometary nuclei and asteroids. Adv. Astron. Astrophys. 2: 219–262.

    Google Scholar 

  32. Pillmore, C.L.; Tschudy, R.H.; Orth, C.J.; Gilmore, J.S.; and Knight, J.D. 1982. Iridium abundance anomalies at the palynological Cretaceous/Tertiary boundary in coal beds of the Raton Formation, Raton basin, New Mexico and Colorado. Abstract. Geological Society of America Annual Meeting, 95th, New Orleans, LA.

    Google Scholar 

  33. Scholl, H., and Froeschle, C. 1977. The Kirkwood gaps as an asteroidal source of meteorites. InComets, Asteroids and Meteorites, ed. A.H. Delsemme, pp. 293–295. Toledo: University of Toledo Press.

    Google Scholar 

  34. Sekanina, Z. 1971. A core-mantle model for cometary nuclei and asteroids of possible cometary origin. InPhysical Studies of Minor Planets, ed. T. Gehrels, pp. 423–426. Washington, D.C.: NASA-SP 267.

    Google Scholar 

  35. Shaw, H.F., and Wasserburg, G.J. 1982. Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics. Earth Planet. Sci. Lett. 60: 155–177.

    Article  Google Scholar 

  36. Shoemaker, E.M. 1972. Cratering history and early evolution of the Moon. Lunar Sci. III: 696–698.

    Google Scholar 

  37. Shoemaker, E.M. 1977. Astronomically observable crater-forming projectiles. InImpact and Explosion Cratering, eds. D.J. Roddy et al, pp. 617–628. New York: Pergamon Press, Inc.

    Google Scholar 

  38. Shoemaker, E.M. 1983. Asteroid and comet bombardment of the Earth. Ann. Rev. Earth.Planet. Sci. 11: 461–494.

    Article  Google Scholar 

  39. Shoemaker, E.M.; Williams, J.G.; Helin, E.F.; and Wolfe, R.F. 1979. Earth-crossing asteroids: Orbital classes, collision rates with the Earth, and origin. InAsteroids, ed. T. Gehrels, pp. 253–282. Tucson: University of Arizona.

    Google Scholar 

  40. Shoemaker, E.M., and Wolfe, R.F. 1982. Cratering time scales for the Galilean satellites. InThe Satellites of Jupiter, ed. D. Mossison, pp. 277–339. Tucson: University of Arizona Press.

    Google Scholar 

  41. Shu, F.H.; Milione, V.; Gebel, W.; Yuan, C.; Goldsmith, D.W.; and Roberts, W.W. 1972. Galactic shocks in an interstellar medium with two stable phases. Astrophys. J. 173: 557–592.

    Article  Google Scholar 

  42. Smit, J., and Hertogen, J. 1980. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285: 198–200.

    Article  Google Scholar 

  43. Soderblom, L.A., and Boyce, J.M. 1972. Relative ages of some near-side and far-side Terra plains based on Apollo 16 metric photography. NASA Spec. Paper 315: 29–3–29–6.

    Google Scholar 

  44. van Houten, C.J.; van Houten-Groenveld, I.; Herget, P.; and Gehrels, T. 1970. The Palomar-Leiden survey of faint minor planets. Astron. Astrophys. Suppl. 2: 339–448.

    Google Scholar 

  45. van den Bergh, S. 1982. Giant molecular clouds and the solar system comets. J. Roy. Astron. Soc. Can. 76: 303–317.

    Google Scholar 

  46. Weissman, P.R. 1982. Dynamical history of the Oort cloud. InComets, ed. L.L. Wilkening, pp. 637–658. Tucson: University of Arizona Press.

    Google Scholar 

  47. Weissman, P.R. 1982. Terrestrial impact rates for long and short–period comets. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth, eds. L.T. Silver and P.H. Schultz. Geol. Soc. Am. Spec. Paper 190: 15–24.

    Google Scholar 

  48. Wetherill, G.W. 1967. Collisions in the asteroid belt. J. Geophys. Res. 72: 2429–2444.

    Article  Google Scholar 

  49. Wetherill, G.W. 1975. Late heavy bombardment of the Moon and the terrestrial planets. Proceedings of the VI Lunar Science Conference, vol. 2, pp. 1539–1561, Houston, Texas. Oxford: Pergamon Press.

    Google Scholar 

  50. Wetherill, G.W. 1977. Evolution of the Earth’s planetesimal swarm subsequent to the formation of the Earth and Moon. Proceedings of the VIII Lunar Science Conference, vol. 8, pp. 1–16. Oxford: Pergamon Press.

    Google Scholar 

  51. Wetherill, G.W. 1977. Fragmentation of asteroids and delivery of fragments to Earth. InComets, Asteroids, Meteorites, ed. A.H. Delsemme, pp. 283–291. Toledo: University of Toledo Press.

    Google Scholar 

  52. Wetherill, G.W. 1979. Steady-state populations of Apollo-Amor objects. Icarus 37: 96–112.

    Article  Google Scholar 

  53. Wetherill, G.W., and Shoemaker, E.M. 1982. Collison of astronomically observable bodies with the Earth. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth, eds. L.T. Silver and P.H. Schultz. Geol. Soc. Am. Spec. Paper 190: 1–13.

    Google Scholar 

  54. Wetherill, G.W., and Williams, J.G. 1968. Evaluation of the Apollo asteroids as sources of stone meteorites. J. Geophys. Res. 73: 635– 648.

    Article  Google Scholar 

  55. Wetherill, G.W., and Williams, J.G. 1979. Origin of differentiated meteorites. InOrigin and Abundance of the Elements, Second Symposium, ed. L.H. Ahrens, pp. 19–31. Oxford: Pergamon Press.

    Google Scholar 

  56. Whipple, F.L. 1978. Comets. InCosmic Dust, ed. J.A.M. McDonnell, pp. 1–73. New York: John Wiley and Sons.

    Google Scholar 

  57. Williams, J.G. 1969. Secular perturbations in the solar system. Ph.D. Thesis, Los Angeles, University of California.

    Google Scholar 

  58. Williams, J.G. 1971. Proper elements, families, and belt boundaries. InPhysical Studies of Minor Planets, ed. T. Gehrels, pp. 177–181. Washington, D.C.: NASA-SP 267.

    Google Scholar 

  59. Williams, J.G. 1973. Meteorites from the asteroid belt? Abstract. Eos. Trans. Am. Geophys. Union 54: 233.

    Google Scholar 

  60. Williams, J.G. 1973. Secular resonances. Abstract. Bull. Am. Astron. Soc. 5: 363.

    Google Scholar 

  61. Williams, J.G. 1979. Proper elements and family memberships of the asteroids. InAsteroids, ed. T. Gehrels, pp. 1040–1063. Tucson: University of Arizona Press.

    Google Scholar 

  62. Zellner, B. 1979. Asteroid taxonomy and the distribution of the compositional types. InAsteroids, ed. T. Gehrels, pp. 783–806. Tucson: University of Arizona Press.

    Google Scholar 

  63. Zimmerman, P.D., and Wetherill, G.W. 1973. Asteroidal source of meteorites. Science 182: 51–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. D. Holland A. F. Trendall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Shoemaker, E.M. (1984). Large Body Impacts Through Geologic Time. In: Holland, H.D., Trendall, A.F. (eds) Patterns of Change in Earth Evolution. Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69317-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69317-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69319-9

  • Online ISBN: 978-3-642-69317-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics