Skip to main content

The Archean/Proterozoic Transition: A Sedimentary and Paleobiologies Perspective

  • Conference paper
Patterns of Change in Earth Evolution

Part of the book series: Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports ((DAHLEM PHYSICAL,volume 5))

Abstract

Sedimentary rocks provide sensitive reflections of source terrains and tectonic settings; they thus constitute important sources of information about crustal processes on the early Earth. The preserved stratigraphic record, if read literally, suggests that Lower Proterozoic sediments as a group differ significantly from those characteristic of the Archean. Lower Proterozoic successions include widespread passive margin continental shelf and epicratonic sequences dominated by mature detrital rocks and carbonates. The composition, sedimentary structures, and geometry of these sedimentary packages indicate that large stable continents existed at the time of their deposition. In low-grade Archean terrains, the predominant supracrustal successions are those of greenstone belts. Sedimentary rocks intercalated among thick volcanic sequences in the lower parts of greenstone successions, particularly older ones, provide little evidence for sialic source terrains, but overlying detrital sequences reflect the unroofing of tonalitic/trondhjemitic intrusions and resemble sedimentary packages accumulating along modern, tectonically active continental margins. Extensive epicratonic or passive margin shelf sequences are notably limited in low-grade terrains, although their presence in several localities provides evidence that continental crustal stabilization occurred on at least a regional scale 3000 Ma ago or earlier. Some Archean high-grade terrains contain what appear to be severely metamorphosed greenstone belt packages, but others include probable remnants of ancient shelf deposits. The association of shelf sequences with high-grade terrains reflects deep burial of continental margins, perhaps beneath tectonically emplaced “low-grade” slabs. This highlights a significant problem of Archean geological interpretation, selective preservation. All in all, evident differences between Lower Proterozoic and Archean stratigraphy appear relatable to the presence of large stable continents during the younger era. This suggests that the late Archean was a period of rapid crustal growth and stabilization, an interpretation corroborated by geochemical evidence. Large-scale cratonization may have had a significant impact on the contemporary biota, especially as regards productivity, and this, in turn, may have influenced atmospheric evolution. This hypothesis highlights many unresolved issues in Precambrian geology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, R.L. 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. London A301: 443–472.

    Google Scholar 

  2. Bickle, M.J.; Martin, A.; and Nisbet, E.G. 1975. Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia. Earth Planet. Sci. Lett. 27: 155–162.

    Article  Google Scholar 

  3. Boak, J.L.; Dymek, R.F.; and Gromet, L.P. 1982. Early crustal evolution: constraints from variable REE patterns in metasedimentary rocks from the 3800 Ma Isua supracrustal belt, West Greenland. Lunar Planet Sci. 13: 51–52.

    Google Scholar 

  4. Cameron, E.M. 1982. Sulphate and sulphate reduction in early Precambrian oceans. Nature 296: 145–148.

    Article  Google Scholar 

  5. Cameron, E.M., and Garrels, R.M. 1980. Geochemical compositions of some Precambrian shales from the Canadian Shield. Chem. Geol. 28: 181–197.

    Article  Google Scholar 

  6. Campbell, F.H.A., ed. 1981. Proterozoic Basins of Canada. Geol. Sur. Can. Paper 81–10: 444.

    Google Scholar 

  7. Chamberlain, W.M., and Marland, G. 1977. Precambrian evolution in a stratified global sea. Nature 265: 135–136.

    Article  Google Scholar 

  8. Coward, M.P.; Lintern, B.C.; and Wright, L. 1976. The pre-cleavage deformation of the sediments and gneisses of the northern part of the Limpopo belt. InThe Early History of the Earth, ed. B.F. Windley, pp. 323–330. New York: Wiley.

    Google Scholar 

  9. Dymek, R.F.; Weed, R.; and Gromet, L.P. 1983. The Malene metasedimentary rocks of Rypeø and their relationship to Amitsoq gneisses. Geol. Unders. Grønland Bull., in press.

    Google Scholar 

  10. Easton, R.M. 1981. Stratigraphy of the Akaitcho Group and the development of an Early Proterozoic continental margin, Wopmay Orogen, Northwest Territories. Geol. Sur. Can. Paper 81–10: 79– 96.

    Google Scholar 

  11. Engel, A.E.J.; et al. 1974. Crustal evolution and global tectonics: a petrogenic view. Geol. Soc. Am. Bull. 85: 843–858.

    Article  Google Scholar 

  12. Eriksson, K.A. 1980. Transitional sedimentation styles in the Moodies and Fig Tree Groups, Barberton Mountain Land, South Africa: evidence favoring an Archean continental margin. Precambrian Res. 12: 141–160.

    Article  Google Scholar 

  13. Erselv, E.A. 1981. Petrology and structure of the Precambrian metamorphic rocks of the southern Madison Range, Southwestern Montana. Ph.D. Dissertation, Harvard University, Cambridge, MA.

    Google Scholar 

  14. Fox, G.; et al. 1981. The phylogeny of prokaryotes. Science 209: 457–463.

    Article  Google Scholar 

  15. Goode, A.D.T. 1981. Proterozoic geology of Western Australia. InPrecambrian of the Southern Hemisphere, ed. D.R. Hunter, pp. 105–204. Amsterdam: Elsevier.

    Google Scholar 

  16. Grandstaff, D.E. 1980. Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South Africa: Implications for oxygen in the Precambrian atmosphere. Precambrian Res. 13: 1–26.

    Article  Google Scholar 

  17. Hoffman, P.F. 1980. A Wilson Cycle of Early Proterozoic age in the northwest of the Canadian Shield. Geol. Assoc. Can. Spec. Paper 20: 523–549.

    Google Scholar 

  18. Hallberg, J.A., and Glikson, A.Y. 1981. Archean granite-greenstone terrains of Western Australia. InPrecambrian of the Southern Hemisphere, ed. D.R. Hunter, pp. 33–104. Amsterdam: Elsevier.

    Google Scholar 

  19. Hamilton, P.J. 1977. Great Dyke and Bushveld mafic phase. J. Petrol. 18: 24–52.

    Google Scholar 

  20. Hayes, J.M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative interpretation. In Origin and Evolution of the Earth’s Earliest Biosphere: An Interdisciplinary Study, ed. J.W. Schopf, pp. 291–301. Princeton: Princeton University Press.

    Google Scholar 

  21. Holland, H.D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press, in press.

    Google Scholar 

  22. Hunter, D.R., ed. 1981. Precambrian of the Southern Hemisphere. Amsterdam: Elsevier.

    Google Scholar 

  23. Knoll, A.H. 1979. Archean photoautotrophy: some alternatives and limits. Origins Life 9: 313–327.

    Article  Google Scholar 

  24. Knoll, A.H. 1982. Tectonics, productivity, and ecosystems on the early earth. InProceedings of the 3rd North American Paleontological Convention, vol. 2, pp. 307–311, Montreal, Canada.

    Google Scholar 

  25. Lewry, J.F. 1981. Lower Proterozoic arc-microcontinent collisional tectonics in the western Churchill Province. Nature 294: 69–72.

    Article  Google Scholar 

  26. Lowe, D.R. 1980. Archean sedimentation. Ann. Rev. Earth Planet. Sci. 8: 145–167.

    Article  Google Scholar 

  27. Lowe, D.R. 1982. Comparative sedimentology of the principal volcanic sequences of Archean greenstone belts in South Africa, Western Australia and Canada: implications for crustal evolution. Precambrian Res. 17: 1–29.

    Article  Google Scholar 

  28. Mayr, E. 1982. The Growth of Biological Thought. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  29. McCulloch, M.Y., and Wasserburg, G.J. 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200: 1003–1011.

    Article  Google Scholar 

  30. McGlynn, J.C., and Irving, E. 1981. Horizontal motions and rotations in the Cambrian Shield during the Early Proterozoic. Geol. Surv. Can. Paper 81–10: 183–190.

    Google Scholar 

  31. McLaren, D.J. 1977. The Silurian-Devonian boundary committee; a final report. The Silurian-Devonian Boundary, IUGS Ser. A5: 1–34.

    Google Scholar 

  32. McLennan, S.M., and Taylor, S.R. 1982. Geochemical constraints on the growth of the continental crust. J. Geol. 90: 347–361.

    Article  Google Scholar 

  33. Moorbath, S. 1975. Evolution of Precambrian crust from strontium isotopie evidence. Nature 254: 395–398.

    Article  Google Scholar 

  34. Moorbath, S. 1977. The oldest rocks and the growth of continents. Sci. Am. 240 (March): 92–104.

    Article  Google Scholar 

  35. Nisbet, E.G. 1982. Definition of ‘Archean’ - comment and a proposal on the recommendations of the International Subcommission on Precambrian Stratigraphy. Precambrian Res. 19; 111–118.

    Article  Google Scholar 

  36. O’Nions, R.K., and Pankhurst, R.J. 1978. Early Archean rocks and geochemical evolution of the earth’s crust. Earth Planet. Sci. Lett. 38: 211–236.

    Article  Google Scholar 

  37. Pettijohn, F.J. 1943. Archean sedimentation. Geol. Soc. Am. Bull. 54: 925–972.

    Google Scholar 

  38. Robertson, D.S.; Tilsley, J.E.; and Hogg, G.M. 1978. The time- bound character of uranium deposits. Econ. Geol. 78: 1409–1419.

    Article  Google Scholar 

  39. Robinson, A., and Spooner, E.T.C. 1982. Source of the detrital components of uraniferous conglomerates, Quirke ore zone, Elliot Lake, Ontario, Canada. Nature 299: 622–624.

    Article  Google Scholar 

  40. Schoell, M., and Wellmer, F.W. 1981. Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada. Nature 290: 696–699.

    Article  Google Scholar 

  41. Schopf, J.W. 1980. Evidences of early Precambrian (Archean) life. Abstract, p. 356. 5th International Palynological Conference, Cambridge.

    Google Scholar 

  42. Shackleton, R.M. 1976. Shallow and deep-level exposures of Archaean crust in India and Africa. InThe Early History of the Earth, ed. B.F. Windley, pp. 317–322. New York: Wiley.

    Google Scholar 

  43. Sims, P.K. 1980. Subdivision of the Proterozoic and Archaean ions: recommendations and suggestions by the International Subcommission on Precambrian Stratigraphy. Precambrian Res. 13: 379–380.

    Article  Google Scholar 

  44. Tankard, A.J.; et al. 1982. Crustal Evolution of Southern Africa. Heidelberg: Springer.

    Book  Google Scholar 

  45. Tarney, J., and Windley, B.F. 1981. Marginal basins through geological time. Phil. Trans. R. Soc. London A301: 217–232.

    Google Scholar 

  46. Turner, C.C., and Walker, R.G. 1973. Sedimentology, stratigraphy, and crustal evolution of the Archean greenstone belt near Sioux Lookout, Ontario. Can. J. Earth Sci. 10: 817–845.

    Article  Google Scholar 

  47. Veizer, J. 1983. Geologic evolution of the Archean-Early Proterozoic earth. InOrigin and Evolution of the Earth’s Earliest Biosphere: An Interdisciplinary Study, ed. J.W. Schopf, pp. 240–259. Princeton: Princeton University press.

    Google Scholar 

  48. Veizer, J., and Compston, W. 1976. 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim. Cosmochim. Acta 40: 905–914.

    Article  Google Scholar 

  49. Von Brunn, V., and Mason, T.R. 1977. Siliciclastic-carbonate tidal deposits from the 3000 m.y. Pongola Supergroup, South Africa. Sed. Geol. 18: 245–255.

    Article  Google Scholar 

  50. Walker, J.C.G. 1978. The early history of oxygen and ozone in the atmosphere. Pure Appl. Geophys. 116: 222–231.

    Article  Google Scholar 

  51. Walker, R.G:, and Pettijohn, F.J. 1971. Archaean sedimentation: analysis of the Minnitaki Basin, Northwestern Ontario, Canada. Geol. Soc. Am. Bull. 82: 2099–2130.

    Article  Google Scholar 

  52. Watchorn, M.B. 1980. Fluvial and tidal sedimentation in the 3000 Ma Mozaan Basin, South Africa. Precambrian Res. 13: 27–42.

    Article  Google Scholar 

  53. Wilson, J.F. 1979. A preliminary reappraisal of the Rhodesian basement complex. Spec. Publ. Geol. Soc. S. Afr. 5: 1–23.

    Google Scholar 

  54. Wilson, J.F.; et al. 1978. Granite-greenstone terrains of the Rhodesian Archean craton. Nature 271: 23–27.

    Article  Google Scholar 

  55. Windley, B.F. 1977. The Evolving Continents. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. D. Holland A. F. Trendall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Knoll, A.H. (1984). The Archean/Proterozoic Transition: A Sedimentary and Paleobiologies Perspective. In: Holland, H.D., Trendall, A.F. (eds) Patterns of Change in Earth Evolution. Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69317-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69317-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69319-9

  • Online ISBN: 978-3-642-69317-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics