Short-term Changes Affecting Atmosphere, Oceans, and Sediments During the Phanerozoic

Group Report
  • W. H. Berger
  • H. Füchtbauer
  • H. D. Holland
  • W. T. Holser
  • W. J. Jenkins
  • H. G. Kulke
  • A. C. Lasaga
  • M. Sarnthein
  • A. Seilacher
  • I. Valeton
  • O. H. Walliser
  • G. Wefer
Part of the Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports book series (DAHLEM, volume 5)


The view of Earth history which emphasized gradualism and a narrow form of uniformitarianism has lost appeal. This view was encouraged by Charles Lyell and Charles Darwin over a century ago, in an effort to combat a catastrophism that derived its strength from mythology rather than from observation. Lyellian uniformitarianism has served its purpose well and for a long time (some think too long). It is now being superceded by concepts emphasizing rapid change in historical development. While this approach is less timid, less dogmatic, and perhaps more realistic than strict gradualism, it is not exactly new. There have always been those who were impressed by the evidence for sudden change in the geologic record (see (83)). However, their views were not generally in the mainstream of geologic thought.


Black Shale Mass Extinction Benthic Foraminifera Geologic Record Group Report 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Anderson, D.L. 1982. Hotspots, polar wander, Mesozoic convection andthegeoid. Nature 297: 391–393.CrossRefGoogle Scholar
  2. (2).
    Anderson, R.Y. 1982. A long geoclimatic record from the Permian. J. Geophys. R. 87: 7285–7294.CrossRefGoogle Scholar
  3. (3).
    Armstrong, R.L. 1969. Control of sea level relative to the continents. Nature 221: 1043.CrossRefGoogle Scholar
  4. (4).
    Arthur, M.A. 1979. Paleoceanographic events - recognition, resolution, and reconsideration. Rev. Geophys. 17: 1474–1494.CrossRefGoogle Scholar
  5. (5).
    Arthur, M.A., and Jenkyns, H.C. 1981. Phosphorites and paleoceanography. Oceanol. Act. (Suppl.) 4: 83–96.Google Scholar
  6. (6).
    Arthur, M.A., and Natland, J.H. 1979. Carbonaceous sediments in the North and South Atlantic: the role of salinity in stable stratification of Early Cretaceous basins. InDeep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, Maurice Ewing Series, eds. M. Talwani, W. Hay, and W.B.F. Ryan, vol. 3, pp. 375–401. Washington, D.C.: American Geophysical Union.Google Scholar
  7. (7).
    Axelrod, D.I. 1983. Role of volcanism in climate and evolution. Geol. Soc. Am. Spec. Paper 185, in press.Google Scholar
  8. (8).
    Barron, J.A., and Keller, G. 1982. Widespread Miocene deep- sea hiatuses: coincidence with periods of global cooling. Geology 10: 577–581.CrossRefGoogle Scholar
  9. (9).
    Barron, E.J.; Sloan, J.L.; and Harrison, C.G.A. 1980. Potential significance of land-sea distribution and surface albedo variations as a climatic forcing factor: 180 m.y. to the present. Palaeogeo. P. 20: 17–40.CrossRefGoogle Scholar
  10. (10).
    Berger, W.H. 1979. Impact of deep-sea drilling on paleoceanography. InDeep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, eds. M. Talwani, W. Hay, and W.B.F. Ryan, vol. 3, pp. 297–314. Maurice Ewing Series. Washington, D.C.: American Geophysical Union.Google Scholar
  11. (11).
    Berger, W.H. 1982. Deglacial CO2 buildup: constraints on the coral-reef model. Palaeogeo. P. 40: 235–253.CrossRefGoogle Scholar
  12. (12).
    Berger, W.H., and Crowell, J.C., eds. 1982. Climate in Earth History. Studies in Geophysics. Washington, D.C.: National Academy Press.Google Scholar
  13. (13).
    Berger, W.H., and Vincent, E. 1981. Chemostratigraphy and biostratigraphic correlation: exercises in systemic stratigraphy. Oceanol. Act. (Suppl.) 4: 115–127.Google Scholar
  14. (14).
    Berger, W.H., and Winterer, E.L. 1974. Plate stratigraphy and the fluctuating carbonate line. InPelagic Sediments on Land and Under the Sea, eds. K.J. Hsu and H. Jenkyns. Spec. Publ. Int. Ass. Sedimentol. 1: 11–48.Google Scholar
  15. (15).
    Berger, W.H.; Vincent, E.; and Thierstein, H.R. 1981. The deep- sea record: major steps in Cenozoic ocean evolution. Soc. Econ. Pa. Spec. Publ. 32: 489–504.Google Scholar
  16. (16).
    Berggren, W.A. 1969. Rates of evolution in some Cenozoic planktonic foraminifera. Micropaleontology 15: 351–365.CrossRefGoogle Scholar
  17. (17).
    Berggren, W.A., and Hollister, C.D. 1977. Plate tectonics and paleocirculation - commotion in the ocean. Tectonophysics 38: 11–48.CrossRefGoogle Scholar
  18. (18).
    Berner, R.A., and Raiswell, R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cos. 47: 855–862.CrossRefGoogle Scholar
  19. (19).
    Bloom, A.L. 1971. Glacial-eustatic and isostatic controls of sea level since the last glaciation. InLate Cenozoic Glacial Ages, ed. K.K. Turekian, pp. 355–376. New Haven, CT: Yale University Press.Google Scholar
  20. (20).
    Bray, J.R. 1974. Volcanism and glaciation during the past 40 millenia. Nature 252: 679–680.CrossRefGoogle Scholar
  21. (21).
    Bryson, R.A., and Goodman, B.M. 1980. Volcanic activity and climatic change. Science 207: 1041–1044.CrossRefGoogle Scholar
  22. (22).
    Broeker, W.S. 1971. A kinetic model for the chemical composition of sea water. Quatern. Res. 1: 188–207.CrossRefGoogle Scholar
  23. (23).
    Broecker, W.S. 1982. Ocean chemistry during glacial time. Geochim. Cos. 46: 1689–1705.CrossRefGoogle Scholar
  24. (24).
    Buggisch, W. 1972. Zur Geologie and Geochemie der Kellwasserkalke and ihrer begleitenden Sedimente (Unteres Oberdevon). Abh. hess. L.-amt Bodenforsch. 62: 1–68.Google Scholar
  25. (25).
    Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18: 154–168.CrossRefGoogle Scholar
  26. (26).
    Cloud, P., and Glaessner, M.F. 1982. The Ediacarian period and system: metazoa inherit the Earth. Science 217: 783–792.CrossRefGoogle Scholar
  27. (27).
    Crowell, J.C. 1978. Gondwanan glaciation, cyclothems, continental positioning, and climatic change. Am. J. Sci. 278: 1345–1372.CrossRefGoogle Scholar
  28. (28).
    Curray, J.R. 1964. Transgressions and Regressions. Papers in Marine Geology, Shepard Commemorative Volume, pp. 175–203. New York: Macmillan.Google Scholar
  29. (29).
    Donn, W.L., and Shaw, D.M. 1977. Model of climate evolution based on continental drift and polar wandering. Geol. Soc. Am. Bull. 88: 390–396.CrossRefGoogle Scholar
  30. (30).
    Einsele, G., and Seilacher, A., eds. 1982. Cyclic and Event Stratification. Berlin: Springer-Verlag.Google Scholar
  31. (31).
    Emiliani, C. 1955. Pleistocene temperatures. J. Geol. 63: 538– 578.CrossRefGoogle Scholar
  32. (32).
    Emiliani, C., ed. 1981. The Ocean Crust. The Sea, vol. 7. New York: Wiley-Interscience.Google Scholar
  33. (33).
    Fairbridge, R.W. 1961. Eustatic changes in sea level. InPhysics and Chemistry of the Earth, vol. 4, pp. 99–185. London: Pergamon Press.Google Scholar
  34. (34).
    Fischer, A.G. 1964. Brackish oceans as the cause of the Permo- Triassic marine faunal crisis. InProblems in Paleoclimatology, ed. A.E.M. Nairn, pp. 566–577. New York: Interscience.Google Scholar
  35. (35).
    Fischer, A.G., and Arthur, M.A. 1977. Secular variations in the pelagic realm. InDeep Water Carbonate Environments, eds. H.E. Cook and P. Enos. Soc. Econ. Pa. Spec. Publ. 25: 19–50.Google Scholar
  36. (36).
    Flessa, K.W., and Imbrie, J. 1973. Evolutionary pulsations: evidence from Phanerozoic diversity patterns. InImplications of Continental Drift to the Earth Sciences, eds. D.H. Tarling and S.K. Runcorn, vol. 1, pp. 247–285. London: Academic Press.Google Scholar
  37. (37).
    Froelich, P.N.; Bender, M.L.; Luedtke, N.A.; Heath, G.R.; and DeVries, T. 1982. The marine phosphorus cycle. Am. J. Sei. 282: 474–511.CrossRefGoogle Scholar
  38. (38).
    Funnell, B.M. 1981. Mechanisms of autocorrelation. J. Geol. Soc. (London) 138: 177–181.CrossRefGoogle Scholar
  39. (39).
    Garrels, R.M., and Lerman, A. 1981. Phanerozoic cycles of sedimentary carbon and sulfur. Proc. Natl. Acad. Sci. 78: 4652– 4656.CrossRefGoogle Scholar
  40. (40).
    Gartner, S., and Keany, J. 1978. The Terminal Cretaceous event. A geologic problem with an oceanographic solution. Geology 6: 708–712.CrossRefGoogle Scholar
  41. (41).
    Grayson, D.K. 1977. Pleistocene avifaunas and the overkill hypothesis. Science 195: 691–693.CrossRefGoogle Scholar
  42. (42).
    Hallam, A. 1963. Major epeirogenic and eustatic changes since the Cretaceous, and their possible relationship to crustal structure. Am. J. Sci. 261: 397–423.CrossRefGoogle Scholar
  43. (43).
    Hallam, A. 1973. Diversity, provinciality and extinction of Mesozoic invertebrates in relation to plate movement. InImplications of Continental Drift to the Earth Sciences, eds. D.H. Tarling and S.K. Runcorn, vol. 1, pp. 287–294. London: Academic Press.Google Scholar
  44. (44).
    Hallam, A. 1977. Secular changes in marine inundation of USSR and North America through the Phanerozoic. Nature 269: 769– 772.CrossRefGoogle Scholar
  45. (45).
    Hamilton, W. 1968. Cenozoic climatic change and its cause. InMeteorological Monographs, vol. 8, no. 30, pp. 128–133. Boston: American Meteorological Society.Google Scholar
  46. (46).
    Haq, B.U. 1981. Paleogene paleoceanography: Early Cenozoic oceans revisited. Oceanol. Act. (Suppl.) 4: 71–82.Google Scholar
  47. (47).
    Haq, B.U.; Worsley, T.R.; Burckle, L.H.; Douglas, R.G.; Keigwin, L.D.; Opdyke, N.D.; Savin, S.V.; Sommer, M.A.; Vincent, E.; and Woodruff, F. 1980. Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events. Geology 8: 427–431.CrossRefGoogle Scholar
  48. (48).
    Harvey, H.W. 1963. The Chemistry and Fertility of Sea Waters. Cambridge: Cambridge University Press.Google Scholar
  49. (49).
    Hay, W.W. 1981. Sedimentological trends resulting from the breakup of Pangaea. Oceanol. Act. (Suppl.) 4: 135–147.Google Scholar
  50. (50).
    Hay, W.W.; Barron, E.J.; Sloan, J.L.; and Southam, J.R. 1981. Continental drift and the global pattern of sedimentation. Geol. Rdsch. 70: 302–315.CrossRefGoogle Scholar
  51. (51).
    Hays, J.D., and Pitman, W.C. 1973. Lithospheric plate motion, sea level changes and climatic and ecologic consequences. Nature 246: 18–22.CrossRefGoogle Scholar
  52. (52).
    Holser, W.T. 1977. Catastrophic chemical events in the history of the ocean. Nature 267: 403–408;CrossRefGoogle Scholar
  53. (53).
    Hooper, P.R. 1982. The Columbia River basalts. Science 215: 1463–1468.CrossRefGoogle Scholar
  54. (54).
    Hüssner, H. 1983. Die Faunenwende Perm/Trias. Geol. Rdsch. 72(1): 1–22.CrossRefGoogle Scholar
  55. (55).
    Hutchinson, G.E. 1954. The biogeochemistry of the terrestrial atmosphere. InThe Earth As a Planet, ed. G.P. Kuiper, pp. 371– 433. Chicago: University of Chicago Press.Google Scholar
  56. (56).
    Jenkyns, H.C. 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. (London) 137: 171–188.CrossRefGoogle Scholar
  57. (57).
    Kennedy, W.J. Ammonite evolution. InPatterns of Evolution, ed. A. Hallam, pp. 251–304. Amsterdam: Elsevier.Google Scholar
  58. (58).
    Kennett, J.P. 1981. Marine tephrochronology. InThe Sea, ed. C. Emiliani, vol. 7, pp. 1373–1436. New York: John Wiley and Sons.Google Scholar
  59. (59).
    Kennett, J.P., and Thunell, R.C. 1977. On explosive Cenozoic volcanism and climatic implications. Science 196: 1231–1234.CrossRefGoogle Scholar
  60. (60).
    Lancelot, Y. 1980. Environements sédimentaires océaniques: développement de la paléo-océanographie. Mem. Ser. Soc. Geol. France 10: 351–362.Google Scholar
  61. (61).
    Larson, R.L., and Pitman, W.C. 1972. World-wide correlation of Mesozoic magnetic anomalies and its implications. Geol. Soc. Am. Bull. 83: 3645–3662.CrossRefGoogle Scholar
  62. (62).
    Leggett, J.K.; McKerrow, W.S.; Cocks, L.R.M.; and Rickards, R.B. 1981. Periodicity in the early Palaeozoic marine realm. J. Geol. Soc. (London) 138: 167–176.CrossRefGoogle Scholar
  63. (63).
    Lipps, J.H. 1970. Plankton evolution. Evolution 24: 1–22.CrossRefGoogle Scholar
  64. (64).
    Lovelock, J.E., and Margulis, L. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26: 1–10.CrossRefGoogle Scholar
  65. (65).
    McLaren, D.J. 1982. Frasnian-Famennian extinctions. Geol. Soc. Am. Spec. Paper 190: 477–484.Google Scholar
  66. (66).
    McLaren, D.J. 1983. Bolides and biostratigraphy. Geol. Soc. Am. Bull. 94: 313–324.CrossRefGoogle Scholar
  67. (67).
    Menard, H.W. 1973. Epeirogeny and plate tectonics. EOS 54: 1244–1255.CrossRefGoogle Scholar
  68. (68).
    Mörner, N.-A. 1981. Revolution in Cretaceous sea-level analysis. Geology 9: 344–346.CrossRefGoogle Scholar
  69. (69).
    Mohr, P. 1983. Ethiopian flood basalt province. Nature 303: 577– 584.CrossRefGoogle Scholar
  70. (70).
    Moore, T.C.; Pisias, N.G.; and Heath, G.R. 1977. Climate changes and lags in Pacific carbonate preservation, sea surface temperature and global ice volume. InThe Fate of Fossil Fuel CO2 in the Oceans, eds. N.R. Andersen and A. Malahoff, pp. 145–165. New York: Plenum Press.Google Scholar
  71. (71).
    Moore, T.C., and Romine, K. 1981. In search of biostratigraphic resolution. InThe Deep Sea Drilling Project: A Decade of Progress, eds. J.E. Warme, R.G. Douglas, and E.L. Winterer. Soc. Econ. Pa. Spec. Pub. 32: 317–334.Google Scholar
  72. (72).
    Niklas, K.J.; Tiffney, B.H.; and Knoll, A.H. 1980. Apparent changes in the diversity of fossil plants. InEvolutionary Biology, eds. M.K. Hecht et al., vol. 12, pp. 1–89. New York: Plenum.Google Scholar
  73. (73).
    Ninkovich, D., and Donn, W.L. 1975. Explosive Cenozoic volcanism and climatic interpretations. Science 194: 899–906.CrossRefGoogle Scholar
  74. (74).
    Pitman, W.C. III. 1978. Relationship between eustacy and stratigraphic sequences of passive margins. Geol. Soc. Am. Bull. 89: 1389–1403.CrossRefGoogle Scholar
  75. (75).
    Rampino, M.R.; Self, S.; and Fairbridge, R.W. 1979. Can rapid climatic change cause volcanic eruptions? Science 206: 826–829.CrossRefGoogle Scholar
  76. (76).
    Raup, D.M., and Sepkoski, Jr., J.J. 1982. Mass extinctions in the marine fossil record. Science 215: 1501–1503.CrossRefGoogle Scholar
  77. (77).
    Russell, K. 1968. Oceanic ridges and eustatic changes in sea level. Nature 218: 861–862.CrossRefGoogle Scholar
  78. (78).
    Ryan, W.B.F., and Cita, M.B. 1977. Ignorance concerning episodes of ocean-wide stagnation. Marine Geol. 23: 197–215.CrossRefGoogle Scholar
  79. (79).
    Ryan, W.B.F.; Hsü, K.J.; Cita, M.B.; Dumitrica, P.; Lort, J.M.; Maync, W.; Nesteroff, W.D.; Pautot, G.; Stradner, H.; and Wezel, F.C. 1973. Initial Reports of the Deep Sea Drilling Project, vol. 13. Washington, D.C.: U.S. Government Printing Office.Google Scholar
  80. (80).
    Ryan, W.F.; Cita, M.B.; Dreyfus Rawson, M.; Burckle, L.H.; and Saito, T. 1974. A paleomagnetic assignment of Neogene stage boundaries and the development of isochronous datum planes between the Mediterranean, the Pacific and Indian Oceans in order to investigate the response of the world ocean to the Mediterranean “salinity crisis”. Riv. Ital. Pa. 80: 631–688.Google Scholar
  81. (81).
    Ryther, J.H. 1969. Photosynthesis and fish production in the sea. Science 166: 72–76.CrossRefGoogle Scholar
  82. (82).
    Savin, S.M.; Douglas, R.M.; and Stehli, F.G. 1975. Tertiary marine paleotemperatures. Geol. Soc. Am. Bull. 86: 1499–1510.CrossRefGoogle Scholar
  83. (83).
    Schindewolf, O.H. 1950. Der Zeitfaktor in Geologie and Paläontologie. Stuttgart: Schweizerbart.Google Scholar
  84. (84).
    Schlanger, S.O.; Jenkyns, H.-C.; and Premoli-Silva, I. 1981. Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Plan. 52: 435–449.CrossRefGoogle Scholar
  85. (85).
    Scholle, P.A., and Arthur, M.A. 1980. Carbon isotopic fluctuations in pelagic limestones: potential stratigraphic and petroleum exploration tool. Am. Assoc. Pet. Geol. Bull. 64: 67–87.Google Scholar
  86. (86).
    Sepkoski, J.J. 1982. Mass extinctions in the Phanerozoic oceans: a review. Geol. Soc. Am. Spec. Paper 190: 283–289.Google Scholar
  87. (87).
    Shackleton, N.J., and Kennett, J.P. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project, vol. 29, pp. 743–755. Washington, D.C.: U.S. Government Printing Office.Google Scholar
  88. (88).
    Shackleton, N.J., and Opdyke, N.D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: Oxvgen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3(1): 39–55.CrossRefGoogle Scholar
  89. (89).
    Tappan, H. 1968. Primary production, isotopes, extinctions and the atmosphere. Paleo. P. 4: 187–210.CrossRefGoogle Scholar
  90. (90).
    Thiede, J., and van Andel, T.H. 1977. The paleonenvironment of anaerobic sediments in the late Mesozoic South Atlantic Ocean. Earth Plan. 33: 301–309.CrossRefGoogle Scholar
  91. (91).
    Thierstein, H.R. 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep-sea sediments. InDeep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, eds. M. Talwani, W. Hay, and W.B.F. Ryan, vol. 3, pp. 249–274. Maurice Ewing Series. Washington, D.C.: American Geophysical Union.Google Scholar
  92. (92).
    Thierstein, H.R., and Berger, W.H. 1978. Injection events in ocean history. Nature 276: 461–466.CrossRefGoogle Scholar
  93. (93).
    Thompson, S.L., and Barron, E.J. 1981. Comparison of Cretaceous and present Earth albedos: implications for the causes of paleoclimates. J. Geol. 89: 143–167.CrossRefGoogle Scholar
  94. (94).
    Tipper, J.C. 1983. Rates of sedimentation, and stratigraphical completeness. Nature 302: 696–698.CrossRefGoogle Scholar
  95. (95).
    Vail, P.R.; Mitchum, R.M.; and Thompson, S. 1977. Seismic stratigraphy and global changes of sea level. Part 4: global cycles of relative changes of sea level. Am. Assoc. Pet. Geol. Mem. 26: 83–97.Google Scholar
  96. (96).
    Valentine, J.W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  97. (97).
    Valentine, J.W., and Moores, E.M. 1970. Plate-tectonic regulation of faunal diversity and sea-level: a model. Nature 228: 657–659.CrossRefGoogle Scholar
  98. (98).
    Valentine, J.W., and Moores, E.M. 1972. Global tectonics and the fossil record. J. Geol. 80: 167–184.CrossRefGoogle Scholar
  99. (99).
    Valeton, I. 1983. Klimaperioden lateritischer Verwitterung und ihr Abbild in den synchronen Sedimentationsräumen. Z. Deutsch. Geol. Ges. 134, in press.Google Scholar
  100. (100).
    Vernadsky, V.I. 1924. La Géochimie. Paris: Félix Alcan.Google Scholar
  101. (101).
    Vidal, G., and Knoll, A.H. 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature 297: 57–60.CrossRefGoogle Scholar
  102. (102).
    Vincent, E., and Berger, W.H. 1981. Planktonic foraminifera and their use in paleoceanography. InThe Sea, ed. C. Emiliani, vol. 7, pp. 1025–1119. New York: Wiley-Interscience.Google Scholar
  103. (103).
    Vincent, E.; Killingley, J.S.; and Berger, W.H. 1980. The Magnetic Epoch-6 Carbon Shift, a change in the oceanic 13C/12C ratio 6.2 million years ago. Marine Micropaleo. 5: 185–203.CrossRefGoogle Scholar
  104. (104).
    Watts, A.B. 1982. Tectonic subsidence, flexure and global changes of sea level. Nature 297: 469–474.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen 1984

Authors and Affiliations

  • W. H. Berger
  • H. Füchtbauer
  • H. D. Holland
  • W. T. Holser
  • W. J. Jenkins
  • H. G. Kulke
  • A. C. Lasaga
  • M. Sarnthein
  • A. Seilacher
  • I. Valeton
  • O. H. Walliser
  • G. Wefer

There are no affiliations available

Personalised recommendations