Skip to main content

Abstract

DNA consists of a continuous chain of deoxyribose units linked via phosphodiester bonds at their 5′ and 3′ positions and joined to one of the four nucleotide bases, Thymine (T), cytosine (C), the pyrimidines, guanine (G), or adenine (A), the purines, at their 1′ positions. It exists in organisms in the form of very long chains (5,000 base-pairs long, in the case of bacteriophage øX174, to 240,000,000 bp long, in the case of the largest human chromosome). Thus, in order to determine the sequence of a DNA molecule, the order of nucleotide bases along its sugar-phosphate backbone, it is first necessary to fragment the molecule into segments of a manageable size and to purify each fragment type. This is most readily accomplished by cloning into a plasmid or viral DNA vector. After amplification of the resulting hybrid DNA molecule, the cloned DNA segments (inserts) can be released for sequencing by cleavage with a restriction endonuclease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson S, Gait MJ, Mayol L, Young I (1980) A short primer for sequencing DNA cloned in the single stranded phage vector M13mp2. Nucleic Acids Res 8: 1731–1743

    Article  PubMed  CAS  Google Scholar 

  • Barreil BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282: 189–194

    Article  Google Scholar 

  • Berkner KL, Folk WR (1977) Polynucleotide kinase exchange reaction. Quantitative assay for restriction endonuclease-generated 5′-phosphoryl termini in DNAs. J Biol Chem 252: 3176–3184

    PubMed  CAS  Google Scholar 

  • Donelson J, Wu R (1972) Nucleotide sequence analysis of deoxyribonucleic acid. VI. Determination of 3′-terminal dinucleotide sequences of several species of duplex deoxyribonucleic acid using Escherichia coli deoxyribonucleic acid polymerase I. J Biol Chem 247: 4654–4660

    PubMed  CAS  Google Scholar 

  • Duckworth ML, Gait MJ, Goelet P, Hong GF, Singh M, Titmas RC (1981) Rapid synthesis of oligodeoxyribonucleotides. VI. Efficient mechanised synthesis of heptadecadeoxynucleotides by an improved solid phase phosphotriester route. Nucleic Acids Res 9: 1691–1706

    Article  PubMed  CAS  Google Scholar 

  • Englund PT (1972) The 3′-terminal nucleotide sequences of T7 DNA. J Mol Biol 66: 209–224

    Article  PubMed  CAS  Google Scholar 

  • Friedmann T, Brown DM (1978) Base-specific reactions useful for DNA sequencing: methylene blue-sensitized photooxidation of guanine and osmium tetraoxide modification of thymine. Nucleic Acids Res 5: 615–622

    Article  PubMed  CAS  Google Scholar 

  • Gronenborn B, Messing J (1978) Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites. Nature 272: 375–377

    Article  PubMed  CAS  Google Scholar 

  • Hong GF (1981) A method for sequencing single-stranded cloned DNA in both directions. Biosci Rep 1: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Hurst RO, Kuksis A (1958a) Degradation of deoxyribonucleic acid by hot alkali. Can J Biochem Physiol 36: 919–929

    Article  PubMed  CAS  Google Scholar 

  • Hurst RO, Kuksis A (1958b) Degradation of some purine and pyrimidine derivatives by hot alkali. Can J Biochem Physiol 36: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Jones AS, Mian AM, Walker RT (1968) The alkaline degradation of deoxyribonucleic acid derivatives. J Chem Soc C: 2042–2044

    Google Scholar 

  • Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG (1971) Studies on polynucleotides. XCVI. Repair replication of short synthetic DNAs as catalysed by DNA polymerases. J Mol Biol 56: 341–361

    Google Scholar 

  • Kochetkov NK, Budowskii EI (1971a) Organic chemistry of nucleic acids, part B. Plenum Press, New York, pp 381–400

    Google Scholar 

  • Kochetkov NK, Budowskii EI (1971b) Organic chemistry of nucleic acids, part B. Plenum Press, New York, pp 401–408

    Google Scholar 

  • Kössel H, Roychoudhury R (1971) Synthetic polynucleotides. The terminal additon of ribo-adenylic acid to deoxyoligonucleotides by terminal deoxynucleotidyl transferase as a tool for specific labelling of deoxyoligonucleotides at the 3′ ends. Eur J Biochem 22: 271–276

    Article  PubMed  Google Scholar 

  • Lawley PD, Brookes P (1963) Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem J 89: 127–138

    PubMed  CAS  Google Scholar 

  • Lillehaug JR, Kleppe RK, Kleppe K (1976) Phosphorylation of double-stranded DNAs by T4 polynucleotide kinase. Biochemistry 15: 1858–1865

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560–564

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labelled DNA with base-specific chemical cleavages. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 65. Academic Press, New York London, pp 499–560

    Google Scholar 

  • Messing J, Gronenborn B, Müller-Hill B, Hofschneider PH (1977) Filamentous coliphage Ml3 as a cloning vehicle: insertion of a Hind III fragment of the lac regulatory region in Ml3 replicative form in vitro. Proc Natl Acad Sci USA 74: 3642–3646

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Crea R, Seeburg PH (1980) A system for shotgun DNA sequencing. Nucleic Acids Res 9: 309–321

    Article  Google Scholar 

  • Olson K, Harvey C (1975) Determination of the 3′ terminal nucleotide of DNA fragments. Nucleic Acids Res 2: 319–325

    Article  PubMed  CAS  Google Scholar 

  • Peattie DA (1979) Direct chemical method for sequencing RNA. Proc Natl Acad Sci USA 76: 1760–1764

    Article  PubMed  CAS  Google Scholar 

  • Richardson CC (1965) Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci USA 54: 158–165

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury R, Jay E, Wu R (1976) Terminal labelling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase. Nucleic Acids Res 3:863– 877

    Google Scholar 

  • Rubin CM, Schmid CW (1981) Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res 8: 4613–4619

    Article  Google Scholar 

  • Sanger F, Coulson AR (1978) The use of thin acrylamide gels for DNA sequencing. FEBS Lett 87: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143: 161–178

    Article  PubMed  CAS  Google Scholar 

  • Schreier PH, CorteseR (1979) A fast and simple method for sequencing DNA cloned in the single-stranded bacteriophage Ml3. J Mol Biol 129: 169–172

    CAS  Google Scholar 

  • Schwarz E, Scherer G, Hobom G, Kössel H (1978) Nucleotide sequence of cro, ell part of the O gene in phage λ DNA. Nature 272: 410–414

    Article  PubMed  CAS  Google Scholar 

  • Smith AJN (1979) The use of exonuclease III for preparing single-stranded DNA for use as a template in the chain terminator sequencing method. Nucleic Acids Res 6: 831–848

    Article  PubMed  CAS  Google Scholar 

  • Tu C-PD, Cohen S (1980) 3′ End labelling of DNA with α32P cordycepin 5′ triphosphate. Gene 10: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Winter G, Fields S (1980) Cloning of influenza cDNA into M13: the sequence at the RNA segment encoding the A/PR/8/34 matrix protein. Nucleic Acids Res 8: 1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Winter G, Fields S, Ratti G (1981) The structure of two subgenomic RNAs from human influenza virus A/PR/8/34. Nucleic Acids Res 9: 6907–6915

    Article  PubMed  CAS  Google Scholar 

  • Wu R (1970) Nucleotide sequence analysis of DNA. I. Partial sequence of the cohesive ends of bacteriophage X and 186 DNA. J Mol Biol 51: 501–521

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Taylor E (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage λ DNA. J Mol Biol 57: 491–511

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volckaert, G., Winter, G., Gaillard, C. (1984). DNA Sequencing. In: Pühler, A., Timmis, K.N. (eds) Advanced Molecular Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69305-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69305-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69307-6

  • Online ISBN: 978-3-642-69305-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics