Advertisement

Ectopic Auto-Stimulation of Growth

  • Robert R. Bürk
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

According to dogma nearly every cell in a mammal has the same genes encoded in its DNA and differentiation involves the selective derepression of a different and small proportion of these genes in the cells of different tissues. The gene for a hormone-like growth factor will be present in all cells but only expressed in a source cell from which the factor will be transported in the circulation to a target cell whose growth it regulates. If, by mutation, translocation, or teratogeny (mis-differentiation) the gene becomes expressed in the target cell, then the target cell will stimulate its own proliferation (auto-stimulation) and escape the normal growth regulation controls. Although the normal factor will be acting on the normal receptor to produce a normal response the cell will behave like a tumour cell. An auto-stimulating cell will also grow in culture independently of added growth factor. It has been possible to demonstrate the production of growth factors by tumour cells in tissue culture and that these factors partially explain the reduced requirement of transformed cells for serum in tissue culture.

Keywords

Target Cell Source Cell Laryngeal Carcinoma Baby Hamster Kidney Agar Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanford, K.K., Earle, W.R., and Likely, G.D. (1948) J. Nat. Cancer Inst 9. 229PubMedGoogle Scholar
  2. 2.
    Gey, G.O., Coffman, W.D., and Kubicek, M.T. (1952) Cancer Res. 12, 264.Google Scholar
  3. 3.
    Moore, A.E., Sabachewsky, L., and Toolan, H.W. (1952) Cancer Re. 15, 598.Google Scholar
  4. 4.
    Stanners, C.P., Till, J.E., and Siminovitch, L. (1963) Virology 21, 448.PubMedCrossRefGoogle Scholar
  5. 5.
    Lechner, J.F., and Kaighn, M.E. (1979) J. Cell Physiol 100, 519.PubMedCrossRefGoogle Scholar
  6. 6.
    Ellem, K.A.O., and Gierthy, J.F. (1977) J. Cell Physiol 92 381.PubMedCrossRefGoogle Scholar
  7. 7.
    Macpherson, I., and Stoker, M. (1962) Virology 16, 147.PubMedCrossRefGoogle Scholar
  8. 8.
    Bürk, R.R. (1966) Nature 212, 1261.PubMedCrossRefGoogle Scholar
  9. 9.
    Todaro, G.J., Lazar, G.K., and Green, H. (1965) J. cell. comp. Physiol 66, 325.CrossRefGoogle Scholar
  10. 10.
    Jimenez de Asua, L., Clingan, D., and Rudland, P.S. (1975) Proc. Natl. Acad. Sci. USA 72, 2724.Google Scholar
  11. 11.
    Castor, L. (1969) J. Cell Physiol 75, 57.CrossRefGoogle Scholar
  12. 12.
    Stoker, M.G.P. (1973) Nature 246, 200.PubMedCrossRefGoogle Scholar
  13. 13.
    Bürk, R.R. (1976) Exp. Cell Res 101, 293.PubMedCrossRefGoogle Scholar
  14. 14.
    Bürk, R.R., and Williams, C.A. (1971) in Ciba Foundation Symp.Growth Control in Cell Cultures, eds. G.E.W. Wolstenholme and J. Kniqht. Churchill Livingstone, London, p. 107.Google Scholar
  15. 15.
    Bürk, R.R. (1980) in Control Mechanisms in Animal Cells, eds. L. Jimenez de Asua et al., Raven Press, New York, p. 245.Google Scholar
  16. 16.
    Doll, R. (1978) Cancer Res. 38, 3573.PubMedGoogle Scholar
  17. 17.
    Rees, L.H. (1975) J. Endocrinol 67, 143.PubMedCrossRefGoogle Scholar
  18. 18.
    Bagshawe, K.D. (1974) Brit. Med. Bull 30, 68.PubMedGoogle Scholar
  19. 19.
    Bürk, R.R. (1973) Proc. Natl. Acad. Sci. USA 70., 369.Google Scholar
  20. 20.
    Wiblin, C.N., and Macpherson, I.A. (1972) Int. J. Cancer 10, 269.CrossRefGoogle Scholar
  21. 21.
    Leuthard, P., Steck, G., Bürk, R.R., and Otto, A. (1980) in Control Mechanisms in Animal Cells, eds. L. Jimenez de Asua et al. Raven Press, New York, p. 259.Google Scholar
  22. 22.
    Comings, D.E. (1973) Proc. Natl. Acad. Sci. USA 70. 3324.PubMedCrossRefGoogle Scholar
  23. 23.
    De Larco, J.E., and Todaro, G.J. (1978) Proc. Natl. Acad. Sci. USA 75 4001.PubMedCrossRefGoogle Scholar
  24. 24.
    Todaro, G.J., De Larco, J.E., Fryling, C., Johnson, P.A., and Sporn, M.B. (1981) J. Sup. Struct. Cell. Biochem 15, 287.CrossRefGoogle Scholar
  25. 25.
    Roberts, A.B., Anzano, M.A., Lamb, L.C., Smith, J.M., Frolik, C.A., Marquardt, H., Todaro, G.J., and Sporn, M.B. (1982) Nature 295, 417.PubMedCrossRefGoogle Scholar
  26. 26.
    Heldin, C.-H., Westermark, B., and Wasteson, A. (1979) Proc. Natl. Acad. Sci. USA 76, 3722.PubMedCrossRefGoogle Scholar
  27. 27.
    Deuel, T.F., Huang, J.S., Profitt, R.T., Baenziger, J.U., Chang, D., and Kennedy, B.B. (1981) J. Biol. Chem 256, 8896.PubMedGoogle Scholar
  28. 28.
    Raines, E.W., and Ross, R. (1982) J. Biol. Chem 257, 5154.PubMedGoogle Scholar
  29. 29.
    Heldin, C.H., Westermark, B., and Wasteson, A. (1980) J. cell. Physiol 105, 235.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Robert R. Bürk
    • 1
  1. 1.Friedrich Miescher-InstitutBaselSwitzerland

Personalised recommendations