Interaction of Metastatic and Non-Metastatic Tumor Lines with Aortic Endothelial Cell Monolayer and Their Underlying Basal Lamina

  • Volker Schirrmacher
  • Israel Vlodavsky
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


A common and most important route for the dissemination of neoplastic cells within the body involves invasion and penetration of tumor cells into blood vessels and/or lymphatics (1–3). Following penetration of blood vessels, tumor cells are either carried away passively in the blood stream or remain at the site of vessel invasion where they proliferate and continue to shed emboli into the circulation (4). Tumor cells arrested in the capillary beds of different organs must then invade the endothelial cell lining and its underlying basal lamina in order to escape into the extravascular tissue and find a proper microenvironment where they can establish metastasis (1–3). Electron microscopic studies have shown local dissolution of the subendothelial basement membrane at its region of contact with invading tumor cells (5), thereby suggesting an enzymatic mechanism. Of particular significance are recent studies on the degradation of collagen type IV (6,7), fibronectin (8,9), laminin (10), and sulfated proteoglycans (8,9,11) by metastatic tumor cells because these macromolecules are the predominant structural constituents in basement membranes (8,12,13).


Heparan Sulfate Vascular Endothelium Basal Lamina Extra Cellular Matrix Metastatic Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poste, G. and Fidler, I.J. The pathogenesis of cancer metastasis. Nature 283, 139–146 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    Hart, I.R. and Fidler, I.J. Cancer invasion and metastasis. The Quarterly Review of Biology 55, 121–142 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    Roos, E. and Dingemans, K.P. Mechanisms of metastasis. Biochim. Biophys.Acta 560, 135–166 (1979).PubMedGoogle Scholar
  4. 4.
    Warren, B.A., Chauvin, W.J. and Phillips, J. Blood-borne tumor emboli and their adherence to vessel walls. In: Cancer invasion metastasis: Biologic Mechanisms and Therapy. S.B. Day, et al. (eds). pp. 185–197, New York, Raven Press (1977).Google Scholar
  5. 5.
    Babai, F. Etude ultrastructurale sure la patogenie de l’invasion du muscle strie par des tumeurs transplantables. J.Ultrastr.Res 56, 287–303 (1976).CrossRefGoogle Scholar
  6. 6.
    Liotta, L.A., Abe, S., Gerhon-Robey, P. and Martin, G.R. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc.Natl.Acad.Sci.USA 716, 2268–2272 (1979).CrossRefGoogle Scholar
  7. 7.
    Liotta, L.A., Tryggvason, K., Garbisa, S., Hart, I.R., Foltz, C.M. and Shafie, S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 65–66 (1980).CrossRefGoogle Scholar
  8. 8.
    Kramer, R.H., Vogel, K.G. and Nicolson, G.L. Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J.Biol.Chem Z57, 2678–2686 (1982).Google Scholar
  9. 9.
    Vlodavsky, I., Fuks, Z., Ariav, Y., Altevogt, P. and Schirrmacher, V. Lymphoma cell mediated degradation of sulfated proteoglycans and fibronectin in the subendothelial extracellular matrix: Relationship to tumor cell metastasis. Submitted for publication.Google Scholar
  10. 10.
    Liotta, L.A., Goldfarb, R.H., Brundage, R., Siegal, G.P. and Garbisa, S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane.Google Scholar
  11. 11.
    Vlodavsky, I., Ariav, Y., Atzmon, R. and Fuks, Z. Tumor cell attach ment to the vascular endothelium and subsequent degradation of the subendothelial extracellular matrix. Exptl.Cell.Res. (1982) in press.Google Scholar
  12. 12.
    Hassell, J.R., Robey, P.G., Barrach, H.J., Wilczek, J., Rennard, S.I and Martin, G.R. Isolation of a heparan sulfate containing proteoglycan from basement membrane. Proc.Natl.Acad.Sci.USA 77, 4494–4498 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    Kefalides, N.A., Alper, R. and Clark, C.C. Biochemistry and metabolism of basement membranes. Int.Rev.Cytol 61, 167–228 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    Gospodarowicz, D., Vlodavsky, I., Greenburg, G., Alvarado, J., Johnson, L.R. and Moran, J. Studies on atherogenesis and corneal transplantation using cultured vascular and corneal endothelia. Rec.Prog.Horm.Res, 35, 375–448 (1979).PubMedGoogle Scholar
  15. 15.
    Gospodarowicsz, D., Greenburg, G., Foidart, J.M. and Savion, N. The production and localization of laminin in cultured vascular and corneal endothelial cells. J.Cell.Physiol 107, 171–183 (1981).CrossRefGoogle Scholar
  16. 16.
    Vlodavsky, I., Lui, G.M. and Gospodarowicz, D. Morphological appearance, growth behavior and migratory activity of human cells maintained on extracellular matrix versus plastic. Cell 19, 607–616 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Schirrmacher, V., Shantz, G., Clauer, K., Komitowski, D., Zimmermann H.-P. and Lohmann-Matthes, M.L. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. I. Tumor invasiveness in vitro and metastases formation in vivo. Int.J.Cancer 213, 233–244 (1979).CrossRefGoogle Scholar
  18. 18.
    Dzarlieva, R., Schirrmacher, V. and Fusenig, N. Cytogenetic changes during tumor progression towards invasion, metastasis and immune escape in the Eb/ESb model system. Int.J.Cancer (1982) in press.Google Scholar
  19. 19.
    Schirrmacher, V., Cheingsong-Popov, R. and Arnheiter, H. Hepatocyte- tumor cell interaction in vitro. I. Conditions for rosette formation and inhibition by anti H-2 antibody. J.Exp.Med. 211/ 984–989 (1980).Google Scholar
  20. 20.
    Lohmann-Matthes, M.-L., Schleich, A., Shantz, G. and Schirrmacher, V. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. VII. Interaction of metastasizing and nonmetastasizing tumors with normal tissue in vitro. J.Natl.Cancer Inst 614, 1413–1425 (1980).Google Scholar
  21. 21.
    Bosslet, K., Schirrmacher, V. and Shantz, G. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. VI. Similar specificity patterns of protective anti-tumor immunity in vivo and of cytolytic T cells in vitro. Int.J.Cancer 24, 303–313 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    Schirrmacher, V., Bosslet, K., Shantz, G., Clauer, K. and Hiibsch, D. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between the parental tumor line and its metastasizing variant. Int.J.Cancer 23, 245–252 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    Altevogt, P., Kurnick, J.T., Kimura, A.K., Bosslet, K. and Schirrmacher, V. Different expression of Lyt differentiation antigens and cell surface glycoproteins by a murine T lymphoma line and its high metastatic variant. Eur.J. Immunol 12, 300–307 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    Vlodavsky, I., Ariav, Y., Fuks, Z. and Schirrmacher, V. Lymphoma cell interaction with cultured vascular endothelial cells and with subendothelial basal lamina: attachment, invasion and morphological appearance. Submitted for publication.Google Scholar
  25. 25.
    Kramer, R.H., Gonzalez, R. and Nicolson, G.L. Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells. Int.J.Cancer 26, 639–644 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    Nakadjima, M., Inmura, T., Diferrante, D.T., Diferrante, N. and Nicolson, G.L. Rates of heparan sulfate degradation correlate with invasive and metastatic activities of B16 melanoma sublines. J.Cell.Biol 91, 119a (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Volker Schirrmacher
    • 1
  • Israel Vlodavsky
    • 2
  1. 1.Institut für Immunologie und GenetikDeutsches KrebsforschungszentrumHeidelbergGermany
  2. 2.Department of Clinical OncologyHadassah University HospitalJerusalemIsrael

Personalised recommendations