Pure Platelet-Derived Growth Factor Stimulates Human Fibroblasts to Proliferate in Plasma-Free Culture

  • C. Betsholtz
  • C.-H. Heldin
  • Å. Wasteson
  • B. Westermark
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Platelet-derived growth factor (PDGF) is released from platelets when they aggregate (1). It stimulates connective tissue cells to proliferate in vitro (2–5) and has been ascribed a role in wound healing (6) and in the pathogenesis of atherosclerosis (7). Data concerning the role of PDGF in the cell cycle are conflicting. For 3T3 cell cultures PDGF alone is not capable of inducing DNA synthesis but induces a state of “competence” to respond to other hormones which stimulates “progression” through G1(8–10). Others have found that PDGF alone is sufficient for stimulation of proliferation of normal human glial cells (2). In this study, we have investigated the role of PDGF in the cell cycle of human skin fibroblasts, a cell type which expresses a high number of PDGF receptors (11). We have found that human fetal or neonatal fibroblasts are able to initiate DNA synthesis and divide in serum-free culture in the absence of added growth factors. When this spontaneous proliferation is inhibited by increased cellular density, reduced cell spreading or subphysiologic extracellular Ca2+ concentrations, PDGF becomes mitogenic. In addition, proliferation in the absence of PDGF, EGF or other hormones which usually are added to serum-free culture systems seems to be a feature specific for fetal or neonatal fibroblasts; their adult counterparts have an obligatory requirement for exogenous growth factors.


Human Skin Fibroblast Connective Tissue Cell PDGF Receptor Adult Counterpart Individual Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Busch, A. Wasteson & B. Westermark, (1976) Thromb. Res 8, 493PubMedCrossRefGoogle Scholar
  2. 2.
    C.-H. Heldin, A. Wasteson & B. Westermark, (1980) Proc. Natl. Acad. Sci. USA 77, 6611PubMedCrossRefGoogle Scholar
  3. 3.
    R. Ross & A. Vogel, (1978) Cell 14, 203PubMedCrossRefGoogle Scholar
  4. 4.
    H.N. Antoniades, C.D. Scher & C.D. Stiles, (1979) Proc. Natl. Acad. Sci. USA 76, 1809PubMedCrossRefGoogle Scholar
  5. 5.
    D.R. Clemmons & J.J. Van Wyk (1981) J. Cell. Physiol 106, 361PubMedCrossRefGoogle Scholar
  6. 6.
    S.D. Balk, (1973) Proc. Natl. Acad. Sci. USA 70, 675PubMedCrossRefGoogle Scholar
  7. 7.
    L.A. Harker & R. Ross, (1979) In Seminars in Thrombosis & Hemostasis, Vol 5, p. 274Google Scholar
  8. 8.
    W.J. Pledger, C.D. Stiles, H.N. Antoniades & C.D. Scher, (1977) Proc. Natl. Acad. Sci. USA 74, 4481PubMedCrossRefGoogle Scholar
  9. 9.
    E.B. Leof, W. Wharton, J.J. Van Wyk & W.J. Pledger (1982) Exp. Cell Res 141, 107PubMedCrossRefGoogle Scholar
  10. 10.
    R.B. Rutherford & R. Ross (1976) J. Cell Biol 69, 196PubMedCrossRefGoogle Scholar
  11. 11.
    C.-H. Heldin, A. Wasteson & B. Westermark (1981) Proc. Natl. Acad. Sci. USA 78, 3664PubMedCrossRefGoogle Scholar
  12. 12.
    B. Westermark, (1978) Exp Cell Res. 111, 295PubMedCrossRefGoogle Scholar
  13. 13.
    J. Ponten & L. Stolt, (1980) Exp. Cell Res 129, 367PubMedCrossRefGoogle Scholar
  14. 14.
    A. Zetterberg & G. Auer, (1970) Exp. Cell Res 62, 262PubMedCrossRefGoogle Scholar
  15. 15.
    J. Folkman & A. Moscana, (1978) Nature 273, 345PubMedCrossRefGoogle Scholar
  16. 16.
    J. Ponten, B. Westermark & R. Hugosson (1969) Exp. Cell Res 58, 393PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • C. Betsholtz
    • 1
  • C.-H. Heldin
    • 2
  • Å. Wasteson
    • 2
  • B. Westermark
    • 1
  1. 1.Institute of PathologyUniversity of UppsalaSweden
  2. 2.Institute of Medical and Physiological ChemistryUniversity of UppsalaSweden

Personalised recommendations