Advertisement

Phylogenetic Information Derived from tRNA Sequence Data

  • M. Sprinzl
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Comparison of 250 sequences of tRNAs revealed that the number of positions available for base replacements and thus the provision of information for phylogenetic evaluation were more limited than is generally assumed. The pattern of natural modification of tRNAs most probably reflects the development of the translation machinery in order to achieve higher precision of protein biosynthesis. It is demonstrated, in several experiments, that the introduction of modi-field nucleosides in tRNA affects the tRNA structure, tRNA: ribosome interaction, and also the fidelity of translation.

Keywords

tRNA Gene Phylogenetic Information tRNA Sequence Anticodon Loop tRNA Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borer P, Dengler B, Tinoco I, Uhlenbeck O (1974) J Mol Biol 86: 843–853PubMedCrossRefGoogle Scholar
  2. Cedergren RJ, LaRue B, Sankoff D, Lapalme G, Grosjean H (1980) Proc Natl Acad Sci USA 77: 2791–2795PubMedCrossRefGoogle Scholar
  3. Cedergren RJ, LaRue B, Sankoff D, Grosjean H (1981) CRC Grit Rev Biochem 11: 35–104CrossRefGoogle Scholar
  4. Celis JE, Piper PW (1982) Nucleic Acids Res 10: r83 - r91PubMedCrossRefGoogle Scholar
  5. Clark BFC (1978) In: Altmann S (ed) Transfer RNA. MIT Press, CambridgeGoogle Scholar
  6. Davanloo P, Sprinzl M, Watanabe K, Albani M, Kersten H (1979a) Nucleic Acids Res 6: 1571–1581PubMedCrossRefGoogle Scholar
  7. Davanloo P, Sprinzl M, Cramer F (1979b) Biochemistry 15: 3189–3199CrossRefGoogle Scholar
  8. Dingermann T, Pistel F, Kersten H (1980) Eur J Biochem 104: 33–40PubMedCrossRefGoogle Scholar
  9. Dingermann T, Ogilvie A, Pistel F, Mühldorfer W, Kersten H (1981) Z Physiol Chem 362: 763–773CrossRefGoogle Scholar
  10. Eigen M, Winkler-Oswatitsch R (1981) Naturwissenschaften 68: 217–228PubMedCrossRefGoogle Scholar
  11. Hasegawa M, Yano TA, Miyata T (1981) Precam Res 14: 81–98CrossRefGoogle Scholar
  12. Holley RW, Apgar J, Everet GA, Madison J, Marquisee M, Merril SH, Penswick JR, Zamir A (1965) Science 147: 1462–1465PubMedCrossRefGoogle Scholar
  13. Kersten H, Albani M, Mannlein E, Praisler R, Wermbach P, Nierhaus K-H (1981) Eur J Biochem 114: 451–456PubMedCrossRefGoogle Scholar
  14. Kössel H, Edwards K, Fritzsche E, Koch W, Schwarz Zs (1983) In: Jensen U, Fairbrothers DE (eds) Proteins and nucleic acids in plant systematics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Kruse TA, Clark BFC, Sprinzl M (1978) Nucleic Acids Res 5: 879–891PubMedCrossRefGoogle Scholar
  16. Kubli E (1980) Trends Biochem Sci, pp 90–91Google Scholar
  17. Kuchino Y, Ihara M, Yabusaki Y, Nishimura S (1982) Nature (London) 298: 684–685CrossRefGoogle Scholar
  18. Kruse TA, Clark BFC, Sprinzl M (1978) Nucleic Acids Res 5: 879–891PubMedCrossRefGoogle Scholar
  19. LaRue B, Newhouse N, Nicoghosian K, Cedergren RJ (1981) J Biol Chem 256: 1539–1543PubMedGoogle Scholar
  20. Luehrsen KR, Fox GE (1981) Proc Natl Acad Sci USA 78: 2150–2154PubMedCrossRefGoogle Scholar
  21. Mizuno H, Sundaralingham M (1978) Nucleic Acids Res 5: 4451–4461PubMedCrossRefGoogle Scholar
  22. Ninio J (1982) Molecular approaches to evolution. Pitmann Books LtdGoogle Scholar
  23. Okada N, Shindo-Okada N, Sato S, Hoh YH, Oda KI, Nishimura S (1978) Proc Natl Acad Sci USA 75: 4247–4251PubMedCrossRefGoogle Scholar
  24. Pang H, Ihara M, Kuchino Y, Nishimura S, Gupta R, Woese CR, McCloskey JA (1982) J Biol Chem 257: 3589–3592PubMedGoogle Scholar
  25. Rich A, RajBhandary UL (1976) Annu Rev Biochem 45: 805–860PubMedCrossRefGoogle Scholar
  26. Schimmel PR, Söll D, Abelson JN (1979) Transfer RNA: Structure, properties, and recognition. Cold Spring Harbor Lab, USAGoogle Scholar
  27. Sebiya T, Takeishi K, Ukita T (1969) Biochem Biophys Acta 182: 411–426Google Scholar
  28. Shindo-Okada N, Terada M, Nishimura S (1981) Eur J Biochem 115: 423–428PubMedCrossRefGoogle Scholar
  29. Sprinzl M, Gauss DH (1982) Nucleic Acids Res 10: r1 - r55PubMedCrossRefGoogle Scholar
  30. Sprinzl M, Wagner T, Lorenz S, Erdmann VA (1976) Biochemistry 15: 3031–3039PubMedCrossRefGoogle Scholar
  31. Turnbough CL, Neill RJ, Landsberg R, Ames BN (1979) J Biol Chem 254: 5111–5119PubMedGoogle Scholar
  32. Watanabe K, Kuchino Y, Yamaizumi Z, Kato M, Oshima T, Nishimura S (1979) J Biochem (Tokyo) 86: 893–905Google Scholar
  33. Woese CR (1979) In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: Structure, function, and genetics. Univ Park Press, BaltimoreGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • M. Sprinzl
    • 1
  1. 1.Lehrstuhl für BiochemieUniversität BayreuthBayreuthGermany

Personalised recommendations