Olfactory Food and Mate Recognition

  • Jürgen Boeckh
  • Klaus-Dieter Ernst
Conference paper

Abstract

Olfaction has many facets — membrane excitability, cellular neurophysiology, ethology, orientation physiology, ecology, evolution, psychophysics etc. To combine several of these aspects with the aim of understanding an animal’s activities in its natural environment — this we could learn from men like K.D. Roeder, who made clear that one must understand an animal’s biology, and behaviour, and its nervous system in order to be able to ask reasonable questions about any one of these aspects. He with others awoke our interest in the neurobiological basis of behaviour. E.S. Hodgson, a collaborator of Roeder, with the help of one of Y. Lettwin’s good experimental ideas, successfully tackled such a problem in the area of chemoreception (Hodgson et al. 1955). He and his co-authors studied reactions of individually identifiable receptor cells in an insect taste hair. This method opened new access to the neural coding of olfactory stimuli at the receptor cell level amongst other problems. In the years after this pioneering work, a vast amount of data was collected on reactions of insect olfactory receptor cells (Kaissling 1971). Today we can say that the advantageous conditions which insect provide for such investigations led to results which are important for the understanding of chemoreceptors in general. This, of course, provided a good background for a study of the central olfactory pathway in insects, and one hope is that this might be a way to understand the role of the central networks which control reactions of animals to odours.

Keywords

Cobalt Aldehyde Prep Terpene Chromato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner H, Sass H, Altner I (1977) Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. Cell Tiss Res 176: 389–405CrossRefGoogle Scholar
  2. Baker TC, Meyer W, Roelofs WL (1981) Sex pheromone dosage and blend specificity of response by Oriental fruit moth males. Ent Exp Appl 30: 269–279CrossRefGoogle Scholar
  3. Boeckh J, Boeckh V (1979) Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus (Saturnidae). J Comp Physiol 132: 235–242CrossRefGoogle Scholar
  4. Boeckh J, Sandri C, Akert K (1970) Sensorische Eingänge and synaptische Verbindungen im Zentralnervensystem von Insekten. Z Zellforsch 103: 429–446CrossRefPubMedGoogle Scholar
  5. Boeckh J, Boeckh V, Kühn A (1977) Further data on the topography and physiology of central olfactory neurones in insects. In: LeMagnen J, MacLeod P (eds) Olfaction and taste VI. Information Retrieval, London Washington DC, pp 315–321Google Scholar
  6. Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurons in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145: 447–457CrossRefGoogle Scholar
  7. Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. III. Neuroanatomical characterization of physiologically defined response types of deutocerebral neurones in Periplaneta americana. Cell Tiss Tes 229: 1–22Google Scholar
  8. Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the organization of the central antennal pathways in insects. II. Deutocerebral connections in Locusta migratoria and Periplaneta americana. Cell Tiss Res 176: 285–308CrossRefGoogle Scholar
  9. Esslen J (1982) Funktionsmorphologische Untersuchung olfaktorischer deutocerebraler and protocerebraler Neurone bei Periplaneta americana. PH D Thesis Univ RegensburgGoogle Scholar
  10. Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122: 417–418CrossRefPubMedGoogle Scholar
  11. Homberg U (1981) Ableitungen und Lucifer yellow Markierungen von Neuronen des Tractus olfactorio-globularis im Bienengehirn. Verh Dtsch Zool Ges. Fischer, StuttgartGoogle Scholar
  12. Jawlowski H (1954) Über die Struktur des Gehirns bei Saltatoria. Ann Univ M, Curie-Sklodowska (Sect C) 8: 403–434Google Scholar
  13. Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology vol IV/1. Springer, Berlin Heidelberg New York, pp 351–451Google Scholar
  14. Kaissling KE (1979) Recognition of pheromones by moths, especially in saturniids and bombyx mori. In: Ritter FJ (ed) Chemical ecology: Odour communication in animals. Elsevier, Amsterdam, pp 43–56Google Scholar
  15. Kochansky J, Tette J, Taschenberg EF, Cardé RT, Kaissling KE, Roelofs WJ (1975) Sex pheromone of the moth Antheraea polyphemus. J Insect Physiol 21: 1977–1983CrossRefGoogle Scholar
  16. Mutsumoto SG, Hildebrand JG (1982) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc Roy Soc Lond B 213: 249–277CrossRefGoogle Scholar
  17. Olberg R (1982) Pheromone sensitive intemeurons in the deutocerebrum of the silk moth, Bombyx mori. (in press)Google Scholar
  18. Priesner E (1973) Artspezifität und Funktion einiger Insektenpheromone. Fortsch Zool 22: 49–135Google Scholar
  19. Prillinger L (1981) Postembryonic development of the antennal lobes in Periplaneta americana. Cell Tiss Res 215: 563–575CrossRefGoogle Scholar
  20. Rospars JP, Chambille I (1981) Deutocerebrum of the cockroach Blaberns craniifer Burm. Quantitative study and automated identification of the glomeruli. J Neurobiol 12: 221–247CrossRefPubMedGoogle Scholar
  21. Sass H (1978) Olfactory receptors on the antenna of Periplaneta americana: Response constellations that encode food odours. J Comp Physiol 128: 227–233CrossRefGoogle Scholar
  22. Sass H (1980) Physiological and morphological identification of olfactory receptors on the antenna of male Per pianeta americana. In: Starre H vd (ed) Olfaction and taste V II. Information Retrieval, LondonGoogle Scholar
  23. Schaller L (1978) Structural and functional classification on antennal sensilla of the cockroach, Leucophaea maderae. Cell Tiss Res 225: 129–142CrossRefGoogle Scholar
  24. Schildberger K (1982) Untersuchungen zur Struktur und Funktion von Intemeuronen im Pilzkörperbereich des Gehirns der Hausgrille (Acheta domesticus). Ph D Thesis Univ GöttingenGoogle Scholar
  25. Schneider D, Steinbrecht RA (1968) Checklist of insect olfactory sensilla. Symp Zool Soc Lond 23: 279–297Google Scholar
  26. Selzer R (1981) The processing of a complex food odor by antennal olfactory receptors of Periplaneta americana. J Comp Physiol 144: 509–519CrossRefGoogle Scholar
  27. Steiger U (1967) Über den Feinbau des Neuropils im Corpus pedunculatum der Waldameise. Z Zell-forsch 81: 511–536CrossRefGoogle Scholar
  28. Waldow U (1975) Multimodale Neurone im Deutocerebrum von Periplaneta americana. J Comp Physiol 101: 329–341CrossRefGoogle Scholar
  29. Waldow U, Selsam P (1983) Pheromone-sensitive neurons in the deutocerebrum of male Periplaneta americana: Dose-response charactersitics and classification according to the response to different components of the female odor (in prep.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Jürgen Boeckh
  • Klaus-Dieter Ernst
    • 1
  1. 1.Institut für ZoologieUniversität RegensburgRegensburgF.R. Germany

Personalised recommendations