Skip to main content

Frequency Coding in the Inner Ear of Anuran Amphibians

  • Conference paper

Abstract

The amphibian inner ear is unique among vertebrates in that it contains two separate auditory organs: the amphibian and basilar papillae. Each organ has its own complement of hair cells and overlying tectorial membrane. However, neither organ possesses a basilar membrane or two populations of sensory receptor cells corresponding to inner and outer hair cells. The polarization patterns of the hair cells of both the amphibian papilla (a.p.) and the basilar papilla (b.p.) are a complex function of sensory surface geometry and for the most part are family— if not species-specific (Lewis, 1978). Despite the distinctive inner ear morphology of amphibians, FTCs obtained from auditory nerve fibers in the frog have shapes similar to those of comparable CFs recorded from the eighth nerves of fish, reptiles, birds and mammals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett, A.N. (1981). A theoretical explanation of directional hearing characteristics in Amphibia. J. Theor. Biol. 93, 591–596.

    Article  Google Scholar 

  • Capranica, R.R., Moffat, A.J.M. (1975). Selectivity of the peripheral auditory system of Spadefoot toads (Scaphiopus couchi) for sounds of biological significance. J. Comp. Physiol. 100, 231–249.

    Article  Google Scholar 

  • Eatock, R.A., Manley, G.A. (1981). Auditory nerve fibre activity in the Tokay gecko. II. Temperature effect on tuning. J. Comp. Physiol. 142, 219–226.

    Article  Google Scholar 

  • Eatock, R.A., Manley, G.A., Pawson, L. (1981). Auditory nerve fibre activity in the Tokay gecko. I. Implications for cochlear processing. 142, 203–218.

    Google Scholar 

  • Evans, E.F. (1979). Single unit studies of mammalian cochlear nerve. In: Auditory Investigation: The Scientific and Technological Basis. ( H.A. Beagley, ed.). pp 324–367. Oxford, Clarendon Press.

    Google Scholar 

  • Evans, E.F. (1980). ‘Phase-locking’ of cochlear fibres and the problem of dynamic range. In: Psychophysical Physiological and Behavioural Studies in Hearing. (G. van den Brink, F.A. Bilsen, eds.). pp 300–309. Delft, Delft Univ. Press.

    Google Scholar 

  • Fay, R.R. (1978a). Coding of information in single auditory-nerve fibers of the goldfish. J. Acoust. Soc. Am. 63, 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R. (1978b). Phase-locking in goldfish saccular nerve fibres accounts for frequency discrimination capacities. Nature 275, 320–322.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R.R., Popper, A.N. (1980). Structure and function in teleost auditory systems. In: Comparative Studies of Hearing in Vertebrates ( A.N. Popper, R.R. Fay, eds.). pp 3–42. New York, Springer-Verlag.

    Chapter  Google Scholar 

  • Feng, A. S. (1982). Quantitative analysis of intensity-rate and intensity-latency functions in peripheral auditory nerve fibers of northern leopard frogs. Hearing Res. 6, 241–246.

    Article  CAS  Google Scholar 

  • Feng, A.S., Narins, P.M., Capranica, R.R. (1975). Three populations of primary

    Google Scholar 

  • auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities. J. Comp. Physiol. 100, 221–229.

    Google Scholar 

  • Frishkopf, L.S., Capranica, R.R., Goldstein, M.H., Jr. (1968). Neural coding in the bullfrog’s auditory system-a teleological approach. Proc. IEEE 56, 969–980.

    Article  Google Scholar 

  • Goldberg, J.M., Brown, P.B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J, Neurophysiol. 32, 613–636.

    CAS  Google Scholar 

  • Kiang, N.Y.-S., Watanabe, T., Thomas, E.C., Clark, L.F. (1965). Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Res. Monograph No. 35, Cambridge, Mass., M.I.T. Press

    Google Scholar 

  • Klinke, R., Pause, M. (1980). Discharge properties of primary auditory fibres in Caiman crocodilusz Comparisons and contrasts to the mammalian auditory nerve. Exp. Brain Res. 38, 137–150.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.R. (1978). Comparative studies of the anuran auditory papillae. In: Scanning Electron Microscopy/1978, Vol. 2. ( O. Johari, I. Corvin, eds). pp 633–642. O’Hare, III., SEM Inc.

    Google Scholar 

  • Lewis, E.R., Leverenz, E.L., Koyama, H. (1982). The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. J. Comp. Physiol. 145, 437–445.

    Article  Google Scholar 

  • Liberman, M.C. (1978). Auditory nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63, 442–455.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M.R. (1973a). A scanning electron microscope study of the papilla basilaris of Gecko gecko. Z. Zellforsch. 136, 307–328.

    Article  CAS  Google Scholar 

  • Miller, M.R. (1973b). Scanning electron microscope studies of some lizard basilar papillae. Am. J. Anat. 138, 301–330.

    Article  PubMed  CAS  Google Scholar 

  • Moffat, A.J.M., Capranica, R.R. (1978). Middle ear sensitivity in anurans and reptiles measured by light scattering spectroscopy. J. Comp. Physiol. 127, 97–107.

    Article  Google Scholar 

  • Narins, P.M., Capranica, R.R. (1976). Sexual differences in the auditory system of the treefrog, Eleutherodactylus coqui. Science 192, 378–380.

    Article  PubMed  CAS  Google Scholar 

  • Narins, P.M., Capranica, R.R. (1980). Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain, Behav. Evol. 17, 48–66.

    Article  CAS  Google Scholar 

  • Rose, J.E., Brugge, J.F., Anderson, D.J., Hind, J.E. (1967). Phase-locked response to low-frequency tones in single auditory nerve fibres of the squirrel monkey. J. Neurophysiol. 30, 769–793.

    PubMed  CAS  Google Scholar 

  • Sachs, M.B., Woolf, N.K., Sinnott, J.M. (1980). Response properties of neurons in the avian auditory system: Comparisons with mammalian homologues and consideration of the neural encoding of complex stimuli. In: Comparative Studies of Hearing in Vertebrates (A.N. Popper, R.R. Fay, eds.). pp 323–353. New York, Springer-Verlag.

    Chapter  Google Scholar 

  • Saunders, J.C., Johnstone, B.M. (1972). A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryng. 73, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Wever, E.G. (1976). Origin and evolution of the ear in vertebrates. In: Evolution of Brain and Behavior in Vertebrates ( R.B. Masterton, M.E. Bitterman, C.B.G. Campbell, N. Hotten, eds.). pp 89–105. New York, John Wiley & Sons.

    Google Scholar 

  • Woolf, N.K., Ryan, A.F., Bone, R.C. (1981). Neural phase-locking properties in the absence of cochlear outer hair cells. Hearing Res. 4, 335–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1938 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narins, P.M., Hillery, C.M. (1938). Frequency Coding in the Inner Ear of Anuran Amphibians. In: Klinke, R., Hartmann, R. (eds) HEARING — Physiological Bases and Psychophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69257-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69257-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69259-8

  • Online ISBN: 978-3-642-69257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics