• P. L. Kaufman
  • T. Wiedman
  • J. R. Robinson
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 69)


Cholinergic drugs can exert biological activity by modifying the normal mechanism of ACh-mediated autonomic neurotransmission in several ways (Fig. 1; Koelle 1975 a): interference with transmitter synthesis (hemicholinium); prevention of transmitter release (botulinum toxin); displacement of transmitter from ax-onal terminal (carbachol); mimicry of transmitter at postsynaptic receptor (methacholine, carbachol, nicotine); blockade of transmiter at postsynaptic receptor (atropine, D-tubocurarine, hexamethonium); inhibition of enzymatic breakdown of transmitter (anticholinesterases).


Aqueous Humor Lacrimal Gland Cynomolgus Monkey Trabecular Meshwork Ciliary Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler FH, Scheie H (1940) The site of the disturbance in tonic pupils. Trans Am Ophthalmol Soc 38:183–192PubMedGoogle Scholar
  2. Ågren G, Ramachandran BV (1964) The effect of pyridinium aldoximes and atropine on the incorporation of DF32P in rat liver cell fractions. Acta Physiol Scand 60:95–102PubMedCrossRefGoogle Scholar
  3. Akesson C, Swanson C, Patil PN (1983) Muscarinic receptors of rabbit irides. Naunyn– Schmiedebergs Arch Pharmacol 322:104–110PubMedCrossRefGoogle Scholar
  4. Alexander JH, van Lennep EW (1972) Water and electrolyte secretion by the exorbital lacrimal gland of the rat studied by micropuncture and catheterization techniques. Pflügers Arch 337:299–309PubMedCrossRefGoogle Scholar
  5. Allan L, Burian HM (1965) The valve action of the trabecular meshwork. Studies with silicone models. Am J Ophthalmol 59:382–389Google Scholar
  6. Alm A, Bill A, Young FA (1973) The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres. Exp Eye Res 15:31–36PubMedCrossRefGoogle Scholar
  7. Arenson MS, Wilson H (1971) The parasympathetic secretory nerves of the lacrimal gland of the cat. J Physiol 217:201–212PubMedGoogle Scholar
  8. Armaly MF (1959 a) Studies on intraocular effects of the orbital parasympathetic pathway. I. Technique and effects on morphology. Arch Ophthalmol 61:14–29CrossRefGoogle Scholar
  9. Armaly MF (1959 b) Studies on intraocular effects of the orbital parasympathetics. II. Effects on intraocular pressure. Arch Ophthalmol 62:117–124CrossRefGoogle Scholar
  10. Armaly MF (1959 c) Studies on intraocular effects of the orbital parasympathetic pathway. III. Effect on steady state dynamics. Arch Ophthalmol 62:817–827PubMedCrossRefGoogle Scholar
  11. Armaly MF (1968) Degeneration of ciliary muscle and iris sphincter following resection of the ciliary ganglion. Trans Am Ophthalmol Soc 66:475–502PubMedGoogle Scholar
  12. Armaly MF, Burian HM (1958) Changes in the tonogram during accommodation. Arch Ophthalmol 60:60–68CrossRefGoogle Scholar
  13. Asayama J (1902) Zur Anatomie des Ligamentum Pectinatum. Albrecht von Graefes Arch Ophthalmol 53:113–128Google Scholar
  14. Auricchio G, Diotallevi M (1959 a) La resistenza al deflusso in occhi di coniglio dopo pro-lungato trattamento con diisopropilfluorofosfato. Ann Ottalmol e Clin Ocul 85:493–496Google Scholar
  15. Auricchio G, Diotallevi M (1959 b) Uteriori ricerchi sull’ influenza esercitata dal DFP sulla al deflusso in occhi di coniglio. Ann Ottalmol e Clin Ocul 85:567–570Google Scholar
  16. Axelsson U (1968) Glaucoma, miotic therapy, and cataract. I. The frequency of anterior subcapsular vacuoles in glaucoma eyes treated with echothiophate (phospholine iodide), pilocarpine, or pilocarpine–eserine, and in non–glaucomatous untreated eyes with common senile cataract. Acta Ophthalmol 46:83–98Google Scholar
  17. Axelsson U (1969) Glaucoma miotic therapy and cataract. VI. Experimental studies on the guinea pig eye. Acta Ophthalmol 47:1–11Google Scholar
  18. Axelsson U, Holmberg Å (1966) The frequency of cataract after miotic therapy. Acta Ophthalmol 44:421–429Google Scholar
  19. Bárány EH (1955) Resistance to aqueous outflow. In: Newell FW (ed) Glaucoma, transactions of the first conference. Josiah Macy Jr Foundation, New York, pp 112–113Google Scholar
  20. Bárány EH (1962) The mode of action of pilocarpine on outflow resistance in the eye of a primate (Cercopithecus ethiops). Invest Ophthalmol 1:712–727PubMedGoogle Scholar
  21. Bárány EH (1963) A mathematical formulation of intraocular pressure as dependent on secretion, ultrafiltration, bulk outflow, and osmotic reabsorption of fluid. Invest Ophthalmol 2:584–590PubMedGoogle Scholar
  22. Bárány EH (1965) Relative importance of autonomic nervous tone and structure as determinants of outflow resistance in normal monkey eyes (Cercopithecus ethiops and Macaca irus). In: Rohen JW (ed) The structure of the eye, 2nd symposium. Schattauer, Stuttgart, pp 223–236Google Scholar
  23. Bárány EH (1966 a) The mode of action of miotics on outflow resistance. A study of pilocarpine in the vervet monkey, Cercopithecus ethiops. Trans Ophthalmol Soc UK 86:539–578PubMedGoogle Scholar
  24. Bárány EH (1966 b) Pseudofacility and uveo–scleral outflow routes. Some non–technical difficulties in the determination of outflow facility and rate of formation of aqueous humor. Glaucoma symposium, Tutzing Castle, Karger, Basel, pp 27–51Google Scholar
  25. Bárány EH (1967) The immediate effect on outflow resistance of intravenous pilocarpine in the vervet monkey, Cercopithecus ethiops. Invest Ophthalmol 6:373–380Google Scholar
  26. Bárány EH (1972) Inhibition by hippurate and probenecid of in vitro uptake of iodipamide and o-iodohippurate — composite uptake system for iodipamide in choroid plexus, kidney cortex, and anterior uvea of several species. Acta Physiol Scand 86:12–27PubMedCrossRefGoogle Scholar
  27. Bárány EH (1973 a) The liver-like anion transport system in rabbit kidney, uvea, and choroid plexus. I. Selectivity of some inhibitors, direction of transport, possible physiological substrates. Acta Physiol Scand 88:412–429PubMedCrossRefGoogle Scholar
  28. Bárány EH (1973 b) The liver-like anion transport system in rabbit kidney, uvea, and choroid plexus. II. Efficiency of acidic drugs and other anions as inhibitors. Acta Physiol Scand 88:491–504PubMedCrossRefGoogle Scholar
  29. Bárány EH (1974) Bile acids as inhibitors of the liver-like anion transport system in the rabbit kidney, uvea, and choroid plexus. Acta Physiol Scand 92:195–203PubMedCrossRefGoogle Scholar
  30. Bárány EH (1975) In vitro uptake of bile acids by choroid plexus, kidney cortex, and anterior uvea. I. The iodipamide sensitive transport systems in the rabbit. Acta Physiol Scand 93:250–268PubMedCrossRefGoogle Scholar
  31. Bárány EH (1976) Organic cation uptake in vitro by the rabbit iris-ciliary body, renal cortex, and choroid plexus. Invest Ophthalmol 15:341–348PubMedGoogle Scholar
  32. Bárány EH (1977) Pilocarpine-induced subsensitivity to carbachol and pilocarpine of ciliary muscle in vervet and cynomolgus monkeys. Acta Ophthalmol 55:141–163Google Scholar
  33. Bárány EH, Christensen RE (1967) Cycloplegia and outflow resistance. Arch Ophthalmol 77:757–760PubMedCrossRefGoogle Scholar
  34. Bárány EH, Rohen JW (1965) Localized contraction and relaxation within the ciliary muscle of the vervet monkey (Cercopithecus ethiops). In: Rohen JW (ed) The structure of the eye, 2nd symposium. Schattauer, Stuttgart, pp 287–311Google Scholar
  35. Bárány EH, Berrie CP, Birdsall NJM, Burgen ASV, Hulme EC (1982) The binding properties of the muscarinic receptors of the cynomolgus monkey ciliary body and the response to the induction of agonist subsensitivity. Br J Pharmacol 77:731–739PubMedGoogle Scholar
  36. Baughman RW, Bader CR (1977) Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res 138:469–485PubMedCrossRefGoogle Scholar
  37. Becker B (1960) The transport of organic anions by the rabbit eye. I. In vitro iodopyracet (Diodrast) accumulation by ciliary body–iris preparations. Am J Ophthalmol 50:862–867PubMedGoogle Scholar
  38. Becker B (1961) Iodide transport by the rabbit eye. Am J Physiol 200:804–806PubMedGoogle Scholar
  39. Becker B (1962) The measurement of rate of aqueous flow with iodide. Invest Ophthalmol 1:52–58PubMedGoogle Scholar
  40. Becker B (1967) Ascorbate transport in guinea pig eyes. Invest Ophthalmol 6:10–15Google Scholar
  41. Berggren L (1965) Effect of parasympathomimetic and sympathomimetic drugs on secretion in vitro by the ciliary processes of the rabbit eye. Invest Ophthalmol 4:91–97PubMedGoogle Scholar
  42. Berggren L (1970) Further studies on the effect of autonomic drugs on in vitro secretory activity of the rabbit eye ciliary processes. Acta Ophthalmol 48:293–302Google Scholar
  43. Bertaccini G, Impicciatore M, Mossini F (1972) Action of some N-methyl derivatives of histamine on salivary and lacrimal secretion of the cat. Biochem Pharmacol 21:3076–3078PubMedCrossRefGoogle Scholar
  44. Bill A (1966 a) Formation and drainage of aqueous humor in cats. Exp Eye Res 5:185–190CrossRefGoogle Scholar
  45. Bill A (1966 b) The routes for bulk drainage of aqueous humor in rabbits with and without cyclodialysis. Doc Ophthalmol 20:157–169PubMedCrossRefGoogle Scholar
  46. Bill A (1967) Effects of atropine and pilocarpine on aqueous humor dynamics in cynomol-gus monkeys (Macaca irus). Exp Eye Res 6:120–125PubMedCrossRefGoogle Scholar
  47. Bill A (1969) Effects of atropine on aqueous humor dynamics in the vervet monkey (Cer-copithecus ethiops). Exp Eye Res 8:284–291PubMedCrossRefGoogle Scholar
  48. Bill A (1971 a) Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops). Exp Eye Res 11:195–206PubMedCrossRefGoogle Scholar
  49. Bill A (1971 b) Effects of long-standing stepwise increments in eye pressure on the rate of aqueous humor formation in a primate (Cercopithecus ethiops). Exp Eye Res 12:184–193PubMedCrossRefGoogle Scholar
  50. Bill A (1975) Blood circulation and fluid dynamics in the eye. Pharmacol Rev 55:383–417Google Scholar
  51. Bill A (1981) Ocular circulation. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th ed. Mosby, St. Louis, chap. 6, pp 184–203Google Scholar
  52. Bill A, Bárány EH (1966) Gross facility, facility of conventional routes, and pseudofacility of aqueous humor outflow in the cynomolgus monkey. The reduction in aqueous humor formation rate caused by moderate increments in intraocular pressure. Arch Ophthalmol 75:665–673PubMedCrossRefGoogle Scholar
  53. Bill A, Phillips CI (1971) Uveoscleral drainage of aqueous humor in human eyes. Exp Eye Res 12:275–281PubMedCrossRefGoogle Scholar
  54. Bill A, Svedbergh B (1972) Scanning electron microscopic studies of the trabecular mesh– work and the canal of Schlemm — an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol 50:295–320Google Scholar
  55. Bill A, Wålinder P-E (1966) The effects of pilocarpine on the dynamics of aqueous humor in a primate (Macaca irus). Invest Ophthalmol 5:170–175Google Scholar
  56. Bito LZ (1968) The absence of sympathetic role in anti-ChE-induced changes in cholinergic transmission. J Pharmacol Exp Ther 161:302–309PubMedGoogle Scholar
  57. Bito LZ (1972 a) Accumulation and apparent active transport of prostaglandins by some rabbit tissues in vitro. J Physiol 221:371–387PubMedGoogle Scholar
  58. Bito LZ (1972b) Comparative study of concentrative prostaglandin accumulation by various tissues of mammals and marine vertebrates and invertebrates. Comp Biochem Physiol 43:65–82CrossRefGoogle Scholar
  59. Bito LZ, Banks N (1969) Effects of chronic Cholinesterase inhibitor treatment. I. The pharmacological and physiological behavior of the anti-ChE-treated (Macaca mulatto) iris. Arch Ophthalmol 82:681–686PubMedCrossRefGoogle Scholar
  60. Bito LZ, Baroody RA (1979) Gradual changes in the sensitivity of rhesus monkey eyes to miotics and the dependence of these changes on the regimen of topical Cholinesterase inhibitor treatment. Invest Ophthalmol Vis Sci 18:794–801PubMedGoogle Scholar
  61. Bito LZ, Dawson MJ (1970) The site and mechanism of the control of cholinergic sensitivity. J Pharmacol Exp Ther 175:673–684Google Scholar
  62. Bito LZ, Salvador EV (1972) Intraocular fluid dynamics. III. The site and mechanism of prostaglandin transfer across the blood intraocular fluid barriers. Exp Eye Res 14:233–241PubMedCrossRefGoogle Scholar
  63. Bito LZ, Salvador EV (1976) Effects of anti–inflammatory agents and some other drugs on prostaglandin biotransport. J Pharmacol Exp Ther 198:481–488PubMedGoogle Scholar
  64. Bito LZ, Davson H, Snider N (1965) The effects of autonomic drugs on mitosis and DNA synthesis in the lens ephthelium and on the composition of the aqueous humor. Exp Eye Res 4:54–61PubMedCrossRefGoogle Scholar
  65. Bito LZ, Hyslop A, Hyndman J (1967) Antiparasympathomimetic effects of Cholinesterase inhibitor treatment. J Pharmacol Exp Ther 157:159–169PubMedGoogle Scholar
  66. Bito LZ, Dawson MJ, Petrinovic L (1971) Cholinergic sensitivity: normal variability as a function of stimulus background. Science 172:583–585PubMedCrossRefGoogle Scholar
  67. Bito LZ, Davson H, Salvador EV (1976) Inhibition of in vitro concentrative prostaglandin accumulation by prostaglandins, prostaglandin analogues, and by some inhibitors of organic anion transport. J Physiol 256:257–271PubMedGoogle Scholar
  68. Botelho SY, Hisada M, Fuenmayor N (1966) Functional innervation of the lacrimal gland in the cat. Arch Ophthalmol 16:581–588CrossRefGoogle Scholar
  69. Botelho SY, Goldstein AM, Hisada M (1969) The effects of autonomic nerve impulses and autonomic drugs on secretion by the lacrimal gland. In: Botelho SY, Brooks FP, Shelley WB (eds) Exocrine glands: proceedings of a satellite symposium of the 25th international congress of physiological sciences. University of Pennsylvania Press, Philadelphia, pp 227–245Google Scholar
  70. Bourgon P, Pilley SFJ, Thompson HS (1978) Cholinergic supersensitivity of the iris sphincter in Adie’s tonic pupil. Am J Ophthalmol 85:373–377PubMedGoogle Scholar
  71. Brimblecombe RW (1974) Drug actions at peripheral muscarinic sites. In: Brimblecombe RW (ed) Drug actions on cholinergic systems. University Park Press, Baltimore, pp 19–42Google Scholar
  72. Brogdanski DF, Silser F, Brodie BB (1961) Comparative action of reserpine, tetrabenazine and chlorpromazine on central parasympathetic activity: effects on pupillary size and lacrimation in rabbit and on salivation in dog. J Pharmacol Exp Ther 132:176–182Google Scholar
  73. Bromberg BB (1981) Autonomic control of lacrimal protein secretion. Invest Ophthalmol Vis Sci 20:110–116PubMedGoogle Scholar
  74. Bunke A, Bito LZ (1981) Gradual increase in the sensitivity of extraocular muscles to acetylcholine during topical treatment of rabbit eyes with isoflurophate. Am J Ophthalmol 92:259–267PubMedGoogle Scholar
  75. Burde RM (1981) The extraocular muscles. Anatomy, physiology, and pharmacology. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby St. Louis, chap. 5, pt 1, pp 84–121Google Scholar
  76. Burn JH, Rand MJ (1962) A new interpretation of the adrenergic fiber. Adv Pharmacol 1:1–30CrossRefGoogle Scholar
  77. Carrier O Jr (1972) Cholinergic drugs. In: Carrier O Jr (ed) Pharmacology of the peripheral autonomic nervous system. Year Book Medical Publishers, Chicago, pp 34–73Google Scholar
  78. Casey WJ (1966) Cervical sympathetic stimulation in monkeys and the effects on outflow facility and intraocular volume. A study in the East African vervet (Cercopithecus aethiops). Invest Ophthalmol 5:33–41Google Scholar
  79. Cashin CH, Holten TM, Szinai SS (1972) Synthesis and anticholinergic properties of 1-adamant-1-yl-l–phenyl-3-N-pyrrolidino-1-propranolol hydrochloride. J Medicinal Chem 15:853–854CrossRefGoogle Scholar
  80. Cavanagh HD (1975) Herpetic ocular disease: therapy of persistent epithelial defects. Int Ophthalmol Clin 15:67–88PubMedCrossRefGoogle Scholar
  81. Cavanagh HD, Colley AM (1981) β-Adrenergic and muscarinic binding in corneal epithelium. Invest Ophthalmol Vis Sci 20 [ARVO suppl]:37Google Scholar
  82. Chen T-T, Lee P-F (1976) Clinical experience on Ocusert — pilocarpine system — a long-term evaluation. Invest Ophthalmol 15 [ARVO suppl]:48Google Scholar
  83. Chiang TS, Leaders FF (1971) Antagonism of aceclidine-induced tremor, analgesia, hypothermia, salivation, and lacrymation of some pharmacological agents. Arch Int Phar-macodyn Ther 189:295–302Google Scholar
  84. Chiou GC, Liu HK, Trzeciakowski J (1980) Studies of action mechanism of antiglaucoma drugs with a newly developed cat model. Life Sci 27:2445–2451PubMedCrossRefGoogle Scholar
  85. Claesson H, Bárány E (1978) Time course of light induced changes in pilocarpine sensitivity of rat iris. Acta Physiol Scand 102:394–398PubMedCrossRefGoogle Scholar
  86. Cohen DN, Zakov ZN (1975) The diagnosis of Adie’s pupil using 0.0625% pilocarpine solution. Am J Ophthalmol 79:883–885PubMedGoogle Scholar
  87. Dartt DA, Botelho SY (1979) Protein in rabbit lacrimal gland fluid. Invest Ophthalmol Vis Sci 18:1207–1209PubMedGoogle Scholar
  88. de Haas EBH (1960) Lacrimal gland response to parasympathomimetics after parasympathetic denervation. Arch Ophthalmol 64:34–43PubMedCrossRefGoogle Scholar
  89. De Robertis E, Fizer de Plazas S, La Torre JL, Lunt GS (1970) Proteo lipid cholinergic receptor isolated from the central nervous system and electric tissue. In: Heilbronn E, Winters A (eds) Drugs and cholinergic mechanisms in the CNS. Försvarets Forskningsanstalt, Stockholm, pp 505–520Google Scholar
  90. de Roetth A Jr (1966) Lens opacities in patients on phospholine iodide therapy. Am J Ophthalmol 62:619–628PubMedGoogle Scholar
  91. de Roetth A Jr, Dettbarn W-D, Rosenberg, Wilensky JG, Wong A (1965) Effect of phospholine iodide on blood Cholinesterase levels of normal and glaucoma subjects. Am J Ophthalmol 59:586–592Google Scholar
  92. Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology (Rochester) 85:82–106Google Scholar
  93. Drachman DB (1978a) Myasthenia gravis (first of two parts). N Engl J Med 298:136–142PubMedCrossRefGoogle Scholar
  94. Drachman DB (1978 b) Myasthenia gravis (second of two parts). N Engl J Med 298:186–193PubMedCrossRefGoogle Scholar
  95. Duke–Elder S, Cook C (1963) The development of the surface ectoderm. In: Duke-Elder S (ed) System of ophthalmology, vol 3, pt 1. Normal and abnormal development: embryology. Mosby, St. Louis, chap 5, pp 127–138Google Scholar
  96. Ehinger B (1966) Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca irus). Invest Ophthalmol 5:42–52Google Scholar
  97. Ehlers N (1977) Pharmacology of the conjunctival sac. In: Dikstein S (ed) Drugs and ocular tissues. Karger, New York, pp 23–56Google Scholar
  98. Ehlert FJ, Kokka N, Fairhurst AS (1980) Altered [3 H]quinuclidinyl benzilate binding in the striatum of rats following chronic Cholinesterase inhibition with diisopropylfluorophos-phate. Mol Pharmacol 17:24–30PubMedGoogle Scholar
  99. Ellis PP, Littlejohn K (1974) Effects of topical anticholinesterases on procaine hydrolysis. Am J Ophthalmol 77:71–75PubMedGoogle Scholar
  100. Emmelin NG, Strömblad BCR (1956) Sensitization of the lacrimal gland by treatment with a parasympatholytic agent. Acta Physiol Scand 36:171–174PubMedCrossRefGoogle Scholar
  101. Fitzgerald GG, Cooper JR (1971) Acetylcholine as a possible sensory mediator in rabbit corneal epithelium. Biochem Pharmacol 20:2741–2748PubMedCrossRefGoogle Scholar
  102. Flocks M, Zweng HC (1957) Studies on the mode of action of pilocarpine on aqueous outflow. Am J Ophthalmol 44:380–388PubMedGoogle Scholar
  103. Fogle JA, Neufeld AH (1979) The adrenergic and cholinergic corneal epithelium. Invest Ophthalmol Vis Sci 18:1212–1215PubMedGoogle Scholar
  104. Forbes M, Becker B (1960) The transport of organic anions by the rabbit eye. II. In vivo transport of iodopyracet (Diodrast). Am J Ophthalmol 50:867–875PubMedGoogle Scholar
  105. Fortin EP (1925) Canel de Schlemm y ligamento pectineo. Arch Ophthalmol 4:454–459Google Scholar
  106. Fortin EP (1929) Action du muscle ciliaire sur la circulation de l’oeil; insertion du muscle ciliaire sur la paroi du canal de Schlemm. Signification physiologique et pathologique. CR Soc Biol 102:432–434Google Scholar
  107. Furman M, Lazar M, Leopold IH (1969) Cholinesterase isoenzymes in rabbit ocular tissue homogenates. Doc Ophthalmol 26:185–191PubMedCrossRefGoogle Scholar
  108. Gaasterland D, Kupfer C, Ross K (1975) Studies of aqueous humor dynamics in man. IV. Effects of pilocarpine upon measurements in young normal volunteers. Invest Ophthalmol 14:848–853PubMedGoogle Scholar
  109. Galin MA (1961) Mydriasis provocative test. Arch Ophthalmol 66:353–355PubMedCrossRefGoogle Scholar
  110. Gartner S (1944) Blood vessels of the conjunctiva. Arch Ophthalmol 32:464–476CrossRefGoogle Scholar
  111. Gesztes T (1966) Prolonged apnea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. Br J Anaesthesiol 38:408–409CrossRefGoogle Scholar
  112. Gnädinger M, Walz D, von Hahn HP, Grün F (1967) Acetylcholine–splitting activity of abraded and cultivated corneal epithelial cells. Exp Eye Res 6:239–242PubMedCrossRefGoogle Scholar
  113. Gnädinger M, Heimann E, Markstein R (1973) Choline acetyltransferase in corneal epithelium. Exp Eye Res 15:395–399PubMedCrossRefGoogle Scholar
  114. Goldmann H (1951) L’origine de l’hypertension oculaire dans le glaucome primitif. Ann Ocul (Paris) 184:1086Google Scholar
  115. Graham LT (1974) Comparative aspects of neurotransmitters in the retina. In: Davson H, Graham LT (eds) The Eye, vol 6. Academic, New York, pp 283–342Google Scholar
  116. Grant WM (1963) Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol 69:783–801PubMedCrossRefGoogle Scholar
  117. Green K, Padgett D (1979) Effect of various drugs on pseudofacility and aqueous formation in the rabbit eye. Exp Eye Res 28:239–246PubMedCrossRefGoogle Scholar
  118. Grierson I, Lee WR, Abraham S (1978) Effects of pilocarpine on the morphology of the human outflow apparatus. Br J Ophthalmol 62:302–313PubMedCrossRefGoogle Scholar
  119. Härkönen M, Tarkkanen A (1970) Effect of phospholine iodide on energy metabolites of the rabbit lens. Exp Eye Res 10:1–7PubMedCrossRefGoogle Scholar
  120. Harris LS (1968) Cycloplegic-induced intraocular pressure elevations. Arch Ophthalmol 79:242–246PubMedCrossRefGoogle Scholar
  121. Harris JE, Gruber L, Hoskinson G (1959) The effect of methylene blue and certain other dyes on cation transport and hydration of the rabbit lens. Am J Ophthalmol 47:387–395PubMedGoogle Scholar
  122. Havener WH (1978) Autonomic drugs. In: Havener WH (ed) Ocular pharmacology, 4th edn. Mosby, St. Louis, pp 218–328Google Scholar
  123. Hebb CO (1955) Choline acetylase in mammalian and avian sensory systems. QJ Exp Physiol Cogn Med Sci 40:176–186Google Scholar
  124. Heilbronn E (1975) Biochemistry of cholinergic receptors. In: Waser PG (ed) Cholinergic mechanisms. Raven, New York, pp 343–364Google Scholar
  125. Heine L (1900) Die Anatomie des akkommodierten Auges — mikroskopische Fixierung des Akkommodationspaltes. Albrecht von Graefes Arch Klin Exp Ophthalmol 49:1–7Google Scholar
  126. Hellauer HF (1950) Sensibilität und Acetylcholingehalt der Hornhaut verschiedener Tiere und des Menschen. Z Vergl Physiol 32:303–310CrossRefGoogle Scholar
  127. Herzog V, Sies H, Miller F (1976) Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. J Cell Biol 70:692–706PubMedCrossRefGoogle Scholar
  128. Hofmann H, Holzer H (1953) Die Wirkung von Muskelrelaxantien auf den intraocularen Druck. Klin Monatsbl Augenheilkd 123:1–16Google Scholar
  129. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. An atlas and textbook. Saunders, Philadelphia, pp 205:303–309Google Scholar
  130. Holmberg Å, Bárány EH (1966) The effect of pilocarpine on the endothelium forming the inner wall of Schlemm’s canal: an electron microscopic study in the monkey Cercopithe-cus aethiops. Invest Ophthalmol 5:53–58Google Scholar
  131. Hopff WH, Riggio G, Waser PG (1975) Progress in isolation of acetylcholinesterase. In: Waser PG (ed) Cholinergic mechanisms. Raven, New York, pp 293–298Google Scholar
  132. Howard RO, Wilson WS, Dunn BJ (1973) Quantitative determination of choline acetylase, acetylcholine, and acetylcholinesterase in the developing rabbit cornea. Invest Ophthalmol 12:418–425PubMedGoogle Scholar
  133. Iwatsuki N, Petersen OH (1978) Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline. J Physiol 275:507–520PubMedGoogle Scholar
  134. James RG, Calkins JP (1957) Effect of certain drugs on iris vessels. Arch Ophthalmol 57:414–417CrossRefGoogle Scholar
  135. Jones LT (1966) The lacrimal secretory system and its treatment. Am J Ophthalmol 63:47–60Google Scholar
  136. Karczmar AG (1970) History of research with anticholinesterase agents. In: Radouco-Thomas C, Karczmar AG (eds) Anticholinesterase agents, International encyclopedia of pharmacology and therapeutics, sect 13, vol 1. Pergamon, Oxford, pp 1–44Google Scholar
  137. Kaufman PL (1978) Anticholinesterase-induced cholinergic subsensitivity in primate accommodative mechanism. Am J Ophthalmol 85:622–631PubMedGoogle Scholar
  138. Kaufman PL (1979) Aqueous humor dynamics following total iridectomy in the cynomol-gus monkey. Invest Ophthalmol Vis Sci 18:870–875PubMedGoogle Scholar
  139. Kaufman PL (to be published) Aqueous humor outflow: In: Zadunaisky JA, Davson H (eds) Current topics in eye research. Academic Press, New YorkGoogle Scholar
  140. Kaufman PL, Axelsson U (1975) Induction of subcapsular cataracts in aniridic vervet monkeys by echothiophate. Invest Ophthalmol 14:863–866PubMedGoogle Scholar
  141. Kaufman PL, Bárány EH (1975) Subsensitivity to pilocarpine in primate ciliary muscle following topical anticholinesterase treatment. Invest Ophthalmol 14:302–306Google Scholar
  142. Kaufman PL, Bárány EH (1976 a) Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey. Invest Ophthalmol 15:793–807PubMedGoogle Scholar
  143. Kaufman PL, Bárány EH (1976 b) Residual pilocarpine effects on outflow facility after ciliary muscle disinsertion in the cynomolgus monkey. Invest Ophthalmol 15:558–561PubMedGoogle Scholar
  144. Kaufman PL, Bárány EH (1976c) Subsensitivitiy to pilocarpine of the aqueous outflow system in monkey eyes after topical anticholinesterase treatment. Am J Ophthalmol 82:883–891PubMedGoogle Scholar
  145. Kaufman PL, Lütjen-Drecoll E (1975) Total iridectomy in the primate in vivo: surgical technique and postoperative anatomy. Invest Ophthalmol 14:766–771PubMedGoogle Scholar
  146. Kaufman PL, Axelsson U, Bárány EH (1977 a) Induction of subcapsular cataracts in cynomolgus monkeys by echothiophate. Arch Ophthalmol 95:499–504PubMedCrossRefGoogle Scholar
  147. Kaufman PL, Axelsson U, Bárány EH (1977 b) Atropine inhibition of echothiophate cataractogenesis in monkeys. Arch Ophthalmol 95:1262–1268PubMedCrossRefGoogle Scholar
  148. Kaufman PL, Rohen JW, Bárány EH (1979) Hyperopia and loss of accommodation following ciliary muscle disinsertion in the cynomolgus monkey: physiologic and scanning electron microscopic studies. Invest Ophthalmol Vis Sci 18:665–673PubMedGoogle Scholar
  149. Kaufman PL, Erickson KA, Neider MW (1983 a) Echothiophate cataracts in monkeys: occurrence despite loss of accommodation induced by retrodisplacement of ciliary muscle. Arch Ophthalmol 101:125–128PubMedCrossRefGoogle Scholar
  150. Kaufman PL, Polansky JR, Southren AL, Anderson DR (1983b) Aqueous humor dynamics: outflow. In: Vision research — a national plan. 1983–1987. The 1983 report of the national advisory eye council. Report of the glaucoma panel. US-DHHS. (NIH pub. no. 83–2474), vol 2, pt 4, chap 3, pp 41–53Google Scholar
  151. Keryer G, Rossignol B (1976) Effect of carbachol on 45Ca uptake and protein secretion in rat lacrimal gland. Am J Physiol 230:99–104PubMedGoogle Scholar
  152. Kikkawa T (1968) Studies on the mechanism of tear secretion. 1. On the salt and water secretion from the lacrimal gland and its secretions. Acta Soc Ophthalmol Jap 72:1005–1009Google Scholar
  153. Kikkawa T (1970) Secretory potentials in the lacrimal gland of the rabbit. Jap J Ophthalmol 14:247–262Google Scholar
  154. Kinsey VE (1947) Transfer of ascorbic acid and related compounds across the blood-aqueous barrier. Am J Ophthalmol 30:1262–1266PubMedGoogle Scholar
  155. Kinsey VE (1971) Ion movement in ciliary processes. In: Bittar EE (ed) Membranes and ion transport, vol 3. Wiley, New YorkGoogle Scholar
  156. Kinsey VE, Reddy DVN (1962) Transport of amino acids into the posterior chamber of the rabbit eye. Invest Ophthalmol 1:355–362PubMedGoogle Scholar
  157. Kloog Y, Sachs DI, Korczyn AD, Heron DS, Sokolovsky M (1979a) Muscarinic acetylcholine receptors in cat iris. Biochem Pharmacol 28:1505–1511PubMedCrossRefGoogle Scholar
  158. Kloog Y, Heron DS, Korczyn AD, Sachs DI, Sokolovsky M (1979 b) Muscarinic acetylcholine receptors in albino rabbit iris–ciliary body. Mol Pharmacol 15:581–587PubMedGoogle Scholar
  159. Koelie GB (1975 a) Neurohumoral transmission and the autonomic nervous system. In: Goodman LS, Gilman A (ed) The pharmacological basis of therapeutics, 5th edn. Mac-Millan, New York, chap 2, pp 404–444Google Scholar
  160. Koelie GB (1975 b) Anticholinesterase agents. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 5th edn. MacMillan, New York, chap 22, pp 445–466Google Scholar
  161. Koelie GB (1975c) Parasympathomimetic agents. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 5th edn. MacMillan, New York, chap 22, pp 467–476Google Scholar
  162. Kolker AE, Hetherington J Jr (1976) Becker–Shaffer’s diagnosis and therapy of the glaucomas, 4th edn. Mosby, St. Louis, pp 78–87,325–334Google Scholar
  163. Korczyn AD, Kloog Y, Heron DS, Sachs DI, Sokolovsky M (1979) Muscarinic receptor binding following denervation or decentralization of the iris. Invest Ophthalmol Vis Sci 18[ARVO suppl]:189Google Scholar
  164. Kupfer C (1973) Clinical significance of pseudofacility. Am J Ophthalmol 75:193–204PubMedGoogle Scholar
  165. Lam DMK (1972) Biosynthesis of acetylcholine in turtle photoreceptors. Proc Natl Acad Sci US 69:1987–1991CrossRefGoogle Scholar
  166. Langley JN (1898) On the union of cranial autonomic (visceral) fibers with the nerve cells of the superior cervical ganglion. J Physiol 23:240–270PubMedGoogle Scholar
  167. Laties AM, Jacobowitz D (1966) A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat Rec 156:383–395PubMedCrossRefGoogle Scholar
  168. Lemp MA, Holly FJ, Iwata S, Dohlman CH (1970) The precorneal tear film. 1. Factors in spreading and maintaining a continuous tear film over the corneal surface. Arch Ophthalmol 83:89–94PubMedCrossRefGoogle Scholar
  169. Lemp MA, Dohlman CH, Kuwabara T, Holly FJ, Carroll JM (1971) Dry eye secondary to mucus deficiency. Trans Am Acad Ophthalmol Otolaryngol 75:1223–1227PubMedGoogle Scholar
  170. Leopold IH, Furman M (1971) Cholinesterase isoenzymes in human ocular tissue homog enates. Am J Ophthalmol 72:460–463PubMedGoogle Scholar
  171. Levene RZ (1969) Echothiophate iodide and lens changes. In: Leopold IH (ed) Symposium on ocular therapy, vol 4. Mosby, St. Louis, pp 45–52Google Scholar
  172. Liegl O, Köhn K (1962) Zur Pathogenese der Pupillotonie. Beobachtungen an einer Choroiditis carcinomatosa. Klin Monatsbl Augenheilkd 140:327–328Google Scholar
  173. Lindstrom J, Anhott R, Einarson B, Engel A, Osame M, Montai M (1980) Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation. J Biol Chem 255:8340–8350PubMedGoogle Scholar
  174. Liu HK, Chiou GCY (1981) Continuous, simultaneous, and instant display of aqueous humor dynamics with a micro-spectrophotometer and a sensitive drop counter. Exp Eye Res 32:583–592PubMedCrossRefGoogle Scholar
  175. Lobes LA Jr, Bourgon P (1978) Pupillary abnormalities following argon laser ablation for proliferative diabetic retinopathy. Invest Ophthalmol 17 [ARVO suppl]:224Google Scholar
  176. Lowenfeld IE, Thompson HS (1967) The tonic pupil: a re-evaluation. Am J Ophthalmol 63:46–87Google Scholar
  177. Lowenstein O, Lowenfeld IE (1965) Pupillotonie pseudotabes (syndrome of Markus-Weill and Reys-Holmes-Adie). A critical review of the literature. Surv Ophthalmol 10:129–185PubMedGoogle Scholar
  178. Lütjen-Drecoll E (1973) Structural factors influencing outflow facility and its changeability under drugs. Invest Ophthalmol 12:280–294PubMedGoogle Scholar
  179. Lütjen-Drecoll E (1981) Ultrastructural changes in the monkey eye following long-term treatment with pilocarpine. Invest Ophthalmol Vis Sci 20 [ARVO suppl]:30Google Scholar
  180. Lütjen-Drecoll E, Kaufman PL (1979) Echothiophate-induced structural alterations in the anterior chamber angle of the cynomolgus monkey. Invest Ophthalmol Vis Sci 18:918–929PubMedGoogle Scholar
  181. Lütjen-Drecoll E, Kaufman PL, Bárány EH (1977) Light and electron microscopy of the anterior chamber angle structures following surgical disinsertion of the ciliary muscle in the cynomolgus monkey. Invest Ophthalmol Vis Sci 16:218–225PubMedGoogle Scholar
  182. Lütjen–Drecoll E, Futa R, Rohen JW (1981) Ultrahistochemical studies on tangential sections of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 21:563–573PubMedGoogle Scholar
  183. Macri FJ, Cevario SJ (1973) The induction of aqueous humor formation by the use of acetylcholine and eserine. Invest Ophthalmol 12:910–916PubMedGoogle Scholar
  184. Macri FJ, Cevario SJ (1974) The dual nature of pilocarpine to stimulate or inhibit the formation of aqueous humor. Invest Ophthalmol 13:617–619PubMedGoogle Scholar
  185. Maren TH (1974) HCO3 formation in aqueous humor: mechanism and relation to the treatment of glaucoma. Invest Ophthalmol 13:179–483Google Scholar
  186. Masland RH, Ames A III (1976) Response to acetylcholine of ganglion cells in the isolated mammalian retina. J Neurophysiol 39:1220–1235PubMedGoogle Scholar
  187. Masland RH, Livingstone CH (1976) Effect of activity on the synthesis and release of acetylcholine by an isolated mammalian retina. J Neurophysiol 39:1210–1219PubMedGoogle Scholar
  188. Masland RH, Mills JW (1979) Autoradiographic identification of acetylcholine in the rabbit retina. J Cell Biol 83:159–178PubMedCrossRefGoogle Scholar
  189. McEwen WK, Goodner EK (1969) Secretion of tears and blinking. In: Davson H (ed): The eye, vol 3. Academic, London, pp 341–378Google Scholar
  190. Michon J Jr, Kinoshita JH (1967) Cholinesterase in the lens. Arch Ophthalmol 77:804–808PubMedCrossRefGoogle Scholar
  191. Michon J Jr, Kinoshita JH (1968 a) Experimental miotic cataract. I. Effects of miotics on lens structure, cation content, and hydration. Arch Ophthalmol 79:79–86PubMedCrossRefGoogle Scholar
  192. Michon J Jr, Kinoshita JH (1968b) Experimental miotic cataract. II. Permeability, cation transport, and intermediary metabolism. Arch Ophthalmol 79:611–616PubMedCrossRefGoogle Scholar
  193. Milder B (1981) The lacrimal apparatus. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th Edn, Mosby, St. Louis, chap 2, pp 16–37Google Scholar
  194. Miller RD, Savarese JJ (1981) Pharmacology of muscle relaxants, their antagonists, and monitoring of neuromuscular function. In: Miller RD (ed) Anesthesia, vol 1. Churchill Livingstone, New York, chap 17, pp 487–538Google Scholar
  195. Mindel JS, Mittag TW (1976) Choline acetyltransferase in ocular tissues of rabbits, cats, cattle, and man. Invest Ophthalmol 15:808–814PubMedGoogle Scholar
  196. Mindel JS, Mittag TW (1977) Variability of choline acetyltransferase in ocular tissues of rabbits, cats, cattle and humans. Exp Eye Res 24:25–33PubMedCrossRefGoogle Scholar
  197. Mindel JS, Szilagyi PI, Zadunaisky JA, Mittag TW, Orellana J (1979) The effects of blepharorrhaphy induced depression of corneal cholinergic activity. Exp Eye Res 29:463–468PubMedCrossRefGoogle Scholar
  198. Mittag TW (1979) On the presence of acetylcholine receptors in ocular structures of the rabbit. Invest Ophthalmol Vis Sci 18 [ARVO suppl]: 189Google Scholar
  199. Mittag TW (1980) Receptors in iris and ciliary body. Proc Int Soc Eye Res 1:114Google Scholar
  200. Mizokami K (1977) Demonstration of masked acidic glycosaminoglycans in normal human trabecular meshwork. Jap J Ophthalmol 21:57–71Google Scholar
  201. Moran JF, Triggle DJ (1971) Multiple ligand binding sites at the cholinergic receptor. In: Triggle DJ, Moran JF, Barnard EA (eds) Cholinergic ligand interactions. Academic, London, pp 119–136Google Scholar
  202. Morton WR, Drance SM, Fairclough M (1970) Effect of echothiophate iodide on the lens. Am J Ophthalmol 68:1003–1010Google Scholar
  203. Moses RA (1981 a) Intraocular pressure. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby, St. Louis, chap 8, pp 227–254Google Scholar
  204. Moses RA (1981 b) Accommodation. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby, St. Louis, chap 11, pp 304–325Google Scholar
  205. Müller HK, Kleifeld O, Hockwin O, Dardenne U (1956) Der Einfluß von Pilocarpin und Mintacol auf den Stoffwechsel der Linse. Ber Dtsch Ophthalmol Ges 60:115–120Google Scholar
  206. Nagataki S, Brubaker RF (1982) The effect of pilocarpine on aqueous humor formation in humans. Arch Ophthalmol 100:818–821PubMedCrossRefGoogle Scholar
  207. Neal MJ, Gilroy J (1975) High affinitiy choline transport in the isolated rat retina. Brain Res 93:548–551PubMedCrossRefGoogle Scholar
  208. Nichols CW, Koelie GB (1967) Acetylcholinesterase method for demonstration in amacrine cells of rabbit retina. Science 155:477–478PubMedCrossRefGoogle Scholar
  209. Nichols CW, Koelie GB (1968) Comparison of the localization of acetylcholinesterase and non–specific Cholinesterase activities in mammalian and avian retinas. J Comp Neurol 133:1–16PubMedCrossRefGoogle Scholar
  210. Niemeyer G (1978) Cholinergic antagonists fail to block S potentials in the cat retina. Invest Ophthalmol Vis Sci 17 [ARVO suppl]:385Google Scholar
  211. Nishida S, Sears ML (1969 a) Fine structural innervation of the dilator muscle of the iris of the albino guinea pig studied with permanganate fixation. Exp Eye Res 8:292–296PubMedCrossRefGoogle Scholar
  212. Nishida S, Sears ML (1969b) Dual innervation of the iris sphincter muscle of the albino guinea pig. Exp Eye Res 8:467–469PubMedCrossRefGoogle Scholar
  213. Nomura T, Smelser GK (1974) The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. Invest Ophthalmol 13:525–532PubMedGoogle Scholar
  214. Olsen JS, Neufeld AH (1979) The rabbit cornea lacks cholinergic receptors. Invest Ophthalmol Vis Sci 18:1216–1225PubMedGoogle Scholar
  215. Pantuck EJ (1966) Echothiophate iodide eye drops and prolonged response to suxamethonium. Br J Anaesthesiol 38:406–407CrossRefGoogle Scholar
  216. Parod RJ, Putney JW Jr (1978a) An alpha-adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell. J Physiol 281:359–369PubMedGoogle Scholar
  217. Parod RJ, Putney JW Jr (1978 b) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol 281:371–81PubMedGoogle Scholar
  218. Parod RJ, Putney JW Jr (1980) Stimulus–permeability coupling in rat lacrimal gland. Am J Physiol 239:G106–G113PubMedGoogle Scholar
  219. Parod RJ, Leslie BA, Putney JW Jr (1980) Muscarinic and alpha-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells. Am J Physiol 239:G99–G105PubMedGoogle Scholar
  220. Pesin SR, Candia OA (1982) Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Invest Ophthalmol Vis Sci 22:651–659PubMedGoogle Scholar
  221. Petersen RA, Lee K-J, Donn A (1965) Acetylcholinesterase in the rabbit cornea. Arch Ophthalmol 73:370–377PubMedCrossRefGoogle Scholar
  222. Philipson B, Kaufman PL, Fagerholm P, Axelsson U, Bárány EH (1979) Echothiophate cataracts in monkeys. Electron microscopy and microradiography. Arch Ophthalmol 97:340–346PubMedCrossRefGoogle Scholar
  223. Putney JW Jr, Parod RJ, Marier SH (1977) Control by calcium of exocytosis and membrane permeability to potassium in the rat lacrimal gland. Life Sci 20:1905–1912PubMedCrossRefGoogle Scholar
  224. Putney JW Jr, Van de Walle CM, Leslie BA (1978) Stimulus-secretion coupling in the rat lacrimal gland. Am J Physiol 235:C188–C198PubMedGoogle Scholar
  225. Raina MK, Bito LZ (1979) Correlation between muscarinic receptor concentration, measured by 3 H–quinuclidinyl benzilate binding, and in vivo cholinergic sensitivity of cat eyes. Invest Ophthalmol Vis Sci 18 [ARVO suppl]:189Google Scholar
  226. Raviola E, Raviola G (1962) Richerche istochemiche sulla retina di coniglio nel corso dello sviluppo postnatale. Z Zellforsch 56:552–572PubMedCrossRefGoogle Scholar
  227. Reale EL, Luciano L, Spitznas M (1971) The fine structural localization of acetylcholinesterase activity in the retina and optic nerve of rabbits. J Histochem Cytochem 19:85–96PubMedCrossRefGoogle Scholar
  228. Reddy DVN (1967) Distribution of free amino acids and related compounds in ocular fluids, lens, and plasma of various mammalian species. Invest Ophthalmol 6:478–483PubMedGoogle Scholar
  229. Reddy DVN, Kinsey VE, Skrentny BA, Hopkins EK (1962) Transport of alpha-aminoiso-butyric acid into ocular fluids and lens. Invest Ophthalmol 1:41–51PubMedGoogle Scholar
  230. Richardson KC (1964) The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Am J Anat 114:173–205PubMedCrossRefGoogle Scholar
  231. Rogell GD (1979) Internal ophthalmoplegia after argon laser panretinal photocoagulation. Arch Ophthalmol 97:904–905PubMedCrossRefGoogle Scholar
  232. Rohen JW (1964) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin Heidelberg New York, pp 217–221Google Scholar
  233. Rohen JW, Lütjen E, Bárány EH (1967) The relation between the ciliary muscle and the trabecular meshwork and its importance for the effect of miotics on aqueous outflow resistance. Albrecht Von Graefes Arch Klin Exp Ophthalmol 172:23–47PubMedCrossRefGoogle Scholar
  234. Rohen JW, Futa R, Lütjen-Drecoll E (1981) The fine structure of the cribriform meshwork in normal and glaucomatous eyes as seen in tangential sections. Invest Ophthalmol Vis Sci 21:574–585PubMedGoogle Scholar
  235. Ross CD, McDougal DB (1976) The distribution of choline acetyltransferase activity in vertebrate retina. J Neurochem 26:521–526PubMedCrossRefGoogle Scholar
  236. Ross D, Cohen AI, McDougal DB (1975) Choline acetyltransferase and acetylcholinesterase in normal and biologically fractionated mouse retinas. Invest Ophthalmol 14:756–761PubMedGoogle Scholar
  237. Ruskell GL (1971) Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res 12:166–172PubMedCrossRefGoogle Scholar
  238. Ruttner F (1947) Die tonische Pupillenreaktion: klinische und anatomische Untersuchungen. Mschr Psychiat Neurol 114:265–330CrossRefGoogle Scholar
  239. Sarthy PV, Lam DMK (1979) Endogenous levels of neurotransmitter candidates in photoreceptor cells of the turtle retina. J Neurochem 32:455–561PubMedCrossRefGoogle Scholar
  240. Schachtschabel DP, Bigalke B, Rohen JW (1977) Production of glycosaminoglycans by cell cultures of the trabecular meshwork of the primate eye. Exp Eye Res 24:71–80CrossRefGoogle Scholar
  241. Schimek R, Lieberman WJ (1961) The influence of Cyclogyl and Neo–synephrine on tonographic studies of miotic control in open angle glaucoma. Am J Ophthalmol 51:781–784PubMedGoogle Scholar
  242. Schwartz IR, Bok D (1979) Electron microscopic localization of α-bungarotoxin I125 binding sites in the outer plexiform layer of the goldfish retina. J Neurocytol 8:53–66PubMedCrossRefGoogle Scholar
  243. Scott AB (1980) Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology 87:1044–1049PubMedGoogle Scholar
  244. Scott AB, Rosenbaum A, Collins CC (1973) Pharmacologic weakening of extraocular muscles. Invest Ophthalmol 12:924–927PubMedGoogle Scholar
  245. Sears ML (1981) The aqueous. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby, St. Louis, chap 7, pp 204–226Google Scholar
  246. Sears ML, Selker RG (1967) Denervation supersensitivity of the lacrimal gland. Am J Ophthalmol 63:481–483PubMedGoogle Scholar
  247. Shabo AL, Maxwell DS, Kreiger AE (1976) Structural alterations in the ciliary process and the blood-aqueous barrier of the monkey after systemic urea injections. Am J Ophthalmol 81:162–172PubMedGoogle Scholar
  248. Shaffer RN (1961) In: Newell FW (ed) Glaucoma, transactions of the 5th conference. Josiah Macy Jr Foundation, New York, pp 234–237Google Scholar
  249. Shaffer RN, Hetherington J Jr (1966) Anticholinesterase drugs and cataracts. AM J Ophthalmol 62:613–618PubMedGoogle Scholar
  250. Shefter E (1971) Structural variations in cholinergic ligands. In: Triggle DJ, Moran JF, Barnard EA (eds) Cholinergic ligand interactions. Academic, London, pp 83–117Google Scholar
  251. Sloan LS, Sears ML, Jablonski M (1960) Convergence accommodation relationships. Arch Ophthalmol 63:283–306PubMedCrossRefGoogle Scholar
  252. Stevenson RW, Wilson WS (1974) Drug-induced depletion of acetylcholine in the rabbit corneal epithelium. Biochem Pharmacol 23:3449–3457PubMedCrossRefGoogle Scholar
  253. Stevenson RW, Wilson WS (1975) The effect of acetylcholine and eserine on the movement of Na+ across the corneal epithelium. Exp Eye Res 21:235–244PubMedCrossRefGoogle Scholar
  254. Stjernschantz J (1976) Effect of parasympathetic stimulation on intraocular pressure, formation of aqueous humor and outflow facility in rabbits. Exp Eye Res 22:639–645PubMedCrossRefGoogle Scholar
  255. Stone RA (1979 a) The transport of para–aminohippuric acid by the ciliary body and by the iris of the primate eye. Invest Ophthalmol Vis Sci 18:807–818PubMedGoogle Scholar
  256. Stone RA (1979b) Cholic acid accumulation by the ciliary body and by the iris of the primate eye. Invest Ophthalmol Vis Sci 18:819–826PubMedGoogle Scholar
  257. Swan K, Hart W (1940) A comparative study of the effects of mecholyl, doryl, eserine, pilocarpine, atropine, and epinephrine on the blood-aqueous barrier. Am J Ophthalmol 23:1311–1319Google Scholar
  258. Tangkrisanavinont V, Pholpramool C (1979) Extracellular free calcium and fluid secretion by the rabbit lacrimal gland in vivo. Pfluegers Arch 382:275–277CrossRefGoogle Scholar
  259. Tarkkanen A, Karjalainen K (1966) Cataract formation during miotic treatment for chronic open–angle glaucoma. Acta Ophthalmol 44:932–939Google Scholar
  260. Thaysen JH, Thorn NA (1954) Excretion of urea, sodium, potassium and chloride in human tears. Am J Physiol 178:160–164PubMedGoogle Scholar
  261. Törnqvist G (1966) Effect of cervical sympathetic stimulation on accommodation in monkeys. An example of a beta-adrenergic, inhibitory effect. Acta Physiol Scand 67:363–372PubMedCrossRefGoogle Scholar
  262. Triggle DJ, Triggle CR (1976) Chemical pharmacology of the synapse. Academic, London, pp 291–398,602–629Google Scholar
  263. Uga S (1968) Electron microscopy of the ciliary muscle. II. On the fine structure of the anterior terminal portion of the ciliary muscle. Acta Soc Ophthalmol Jpn 72:1019–1025Google Scholar
  264. Usdin E (1970) Reactions of cholinesterases with substrate inhibitors and reactivators. In: Radouco-Thomas C, Karczmar AG (eds) Anticholinesterase agents. International encyclopedia of pharmacology and therapeutics, Sect. 13, vol 1. Pergamon, Oxford, pp 47–354Google Scholar
  265. Uusitalo R (1972 a) Effect of sympathetic and parasympathetic stimulation on the secretion and outflow of aqueous humor in the rabbit eye. Acta Physiol Scand 86:315–326PubMedCrossRefGoogle Scholar
  266. Uusitalo R (1972b) The action of physostigmine, morphine, cyclopentolate and homatro-pine on the secretion and outflow of aqueous humor in the rabbit eye. Acta Physiol Scand 86: 239–249PubMedCrossRefGoogle Scholar
  267. van Alphen GWHM (1957) Acetylcholine synthesis in corneal epithelium. Arch Ophthalmol 58:449–451CrossRefGoogle Scholar
  268. van Alphen GWHM, Robinette SL, Macri FJ (1962) Drug effects on ciliary muscle and choroid preparations in vitro. Arch Ophthalmol 68:81–93CrossRefGoogle Scholar
  269. van Alphen GWHM, Kern R, Robinette S (1965) Adrenergic receptors of the intraocular muscles. Comparison to cat, rabbit, and monkey. Arch Ophthalmol 74:253–259CrossRefGoogle Scholar
  270. Van Buskirk EM, Grant WM (1973) Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol 76:632–640PubMedGoogle Scholar
  271. van Heyningen R (1975) What happens to the human lens in cataract? Sci Am 233:70–81PubMedCrossRefGoogle Scholar
  272. Vogel Z, Maloney GJ, Ling A, Daniels MP (1977) Identification of synaptic acetylcholine receptor sites in retina with peroxidase–labeled α-bungarotoxin. Proc Natl Acad Sci USA 74:3268–3272PubMedCrossRefGoogle Scholar
  273. Volk CR, Wirtschafter JD, Summers CG (1979) Temporary denervation of the cat iris sphincter muscle: an experimental model of the “tonic pupil” syndrome. Invest Ophthalmol Vis Sci 18 [ARVO suppl]:280Google Scholar
  274. von Brücke H (1938) Die Behandlung der Trigeminusneuralgie durch Alkoholinjektion ins Ganglion Gasseri. Arch f. Klin Chirurg 192:328–353Google Scholar
  275. von Brücke H, Heilauer HF, Umrath K (1949) Azetylcholin und Aneuringehalt der Hornhaut und seine Beziehungen zur Nervenversorgung. Ophthalmologica 117:19–35PubMedCrossRefGoogle Scholar
  276. Wahl JW, Tyner GS (1965) Echothiophate iodide: the effect of 0.0625% solution on blood Cholinesterase. Am J Ophthalmol 60:419–427PubMedGoogle Scholar
  277. Wålinder P-E (1966) Influence of pilocarpine on iodopyracet and iodide accumulation by rabbit ciliary body — iris preparations. Invest Ophthalmol 5:378–385PubMedGoogle Scholar
  278. Wålinder P-E, Bill A (1969a) Aqueous flow and entry of cycloleucine into the aqueous humor of vervet monkeys (Cercopithecus ethiops). Invest Ophthalmol 8:434–445PubMedGoogle Scholar
  279. Wålinder P-E, Bill A (1969b) Influence of intraocular pressure and some drugs on aqueous flow and entry of cycloleucine into the aqueous humor of vervet monkeys (Cercopithecus ethiops). Invest Ophthalmol 8:446–458PubMedGoogle Scholar
  280. Walsh FB, Hoyt WF (1969) Clinical neuro–ophthalmology, 3rd edn. Williams and Wilkins, Baltimore, pp 496–501,1277–1297Google Scholar
  281. Warwick R (1954) The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat 88:71–93PubMedGoogle Scholar
  282. Whitewell J (1958) Denervation of the lacrimal secretion. Br J Ophthalmol 42:518–525CrossRefGoogle Scholar
  283. Wilke K (1974) Early effects of epinephrine and pilocarpine on the intraocular pressure and the episcleral venous pressure in the normal human eye. Acta Ophthalmol 52:231–241Google Scholar
  284. Williams JD, Cooper JR (1965) Acetylcholine in bovine corneal epithelium. Biochem Pharmacol 14:1286–1289PubMedCrossRefGoogle Scholar
  285. Yoshimura H, Hosokawa K (1963) Studies on the mechanism of salt and water secretion from the lacrimal gland. Jpn J Physiol 13:303–318PubMedCrossRefGoogle Scholar
  286. Younge BR, Buske ZJ (1976) Tonic pupil. A simple screening test. Can J Ophthalmol 11:295–299PubMedGoogle Scholar
  287. Zlock D, Erickson K, Kaufman P, Brasier A, Polansky J (1983) Cholinergic r̄x results in a decreased content of muscarinic receptors in ciliary muscle. Invest Ophthalmol Vis Sci 24 (ARVO Suppl): 199Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • P. L. Kaufman
  • T. Wiedman
  • J. R. Robinson

There are no affiliations available

Personalised recommendations