Skip to main content

The Interpretation and Use of the Rotation of Biological Cells

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The application of electric fields to cell suspensions has resulted in the evolution of three new techniques — those of cell rotation, reversible membrane breakdown and fusion. Although these methods differ in the order of magnitude of field involved, they have several concepts and physical parameters in common. Owing to the subject area of this conference, neither breakdown nor fusion will be discussed here, and have already been reviewed earlier (1, 2, 3, 4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zimmermann, U., Scheurich, P., Pilwat, G. and Benz, R. (1981). Angew. Chem. 93, 332–351, Int. Ed. 20, 325–344

    Article  Google Scholar 

  2. Zimmermann, U. and Vienken, J. (1982). J. Membrane Biol. 67, 165–182

    Article  CAS  Google Scholar 

  3. Zimmermann, U. (1982). Biochim. Biophys. Acta 694, 227–277

    Google Scholar 

  4. Arnold, W.M. and Zimmermann, U. (1983). in Biological Membranes, Vol. V. Chapman, D., Ed. Academic Press, London, in press

    Google Scholar 

  5. Teixeira-Pinto, A.A., Nejelski, L.L., Cutler, J.L. and Heller, J.H. (1960). Exp. Cell Res. 20, 548–564

    Article  Google Scholar 

  6. Furedi, A.A. and Valentine, R.C. (1962). Biochim. Biophys. Acta 56, 33–42

    Article  CAS  Google Scholar 

  7. Furedi, A.A. and Ohad, J. (1964). Biochim. Biophys. Acta 79, 1–8

    Google Scholar 

  8. Pohl, H.A. and Crane, J.S. (1971). Biophys. J. 11, 711–727

    Google Scholar 

  9. Pohl, H.A. and Braden, T. (1982). J. Biol. Phys. 10, 17–30

    Article  Google Scholar 

  10. Pohl, H.A. (1978). “Dielectrophoresis”. Cambridge University Press, Cambridge

    Google Scholar 

  11. Mischel, M. and Lamprecht, I. (1980). Z. Naturforsch. 35c, 111–1113

    Google Scholar 

  12. Zimmermann, U., Vienken, J. and Pilwat, G. (1981). Z. Naturforsch. 36c, 173–177

    CAS  Google Scholar 

  13. Hub, H.-H., Ringsdorf, H. and Zimmermann, U. (1982). Angew. Chem. 94, 151–152; Int. Ed. Engl. 21, 134–135

    Article  Google Scholar 

  14. Holzapfel, Chr., Vienken, J. and Zimmermann, U. (1982). J. Membrane Biol. 67, 13–26

    Article  CAS  Google Scholar 

  15. Arnold, W.M. and Zimmermann, U. (1982). Naturwissenschaften 69, 297

    Article  PubMed  CAS  Google Scholar 

  16. Arnold, W.M. and Zimmermann, U. (1982). Z. Naturforsch. 37c, 908–915

    Google Scholar 

  17. Pilwat, G. and Zimmermann, U. (1983). Bioelectrochem. Bioenerg., in press

    Google Scholar 

  18. Pohl, H.A. (1980). in Bioelectrochemistry, Keyzer, H. and Gutmann, F. Eds., Plenum Press, New York

    Google Scholar 

  19. Pohl, H.A., Braden, T, Robinson, S., Piclardi, J. and Pohl, D.G. (1981). J. Biol. Phys. 9, 133–154

    Article  Google Scholar 

  20. Noyes, R.M. (1980). Ber. Bunsenges. Phys. Chem. 84, 295–303

    Google Scholar 

  21. Lafon, E.E. and Pohl, H.A. (1981). J. Biol. Phys. 9, 209–217

    Article  CAS  Google Scholar 

  22. Schwan, H.P. (1957). in Advances in Biological and Medical Physics, Vol. 5, J.H. Laurence and C.A. Tobias, Eds., Academic Press, New York, pp. 147–209

    Google Scholar 

  23. Jeltsch, E. and Zimmermann, U. (1979). Bioelectrochem. Bioenerg. 6, 349–384

    Article  Google Scholar 

  24. Almers, W. (1978). Rev. Physiol. Biochem. Pharmacol. 82, 96–190

    Article  PubMed  CAS  Google Scholar 

  25. Takashima, S. and Schwan, H.P. (1965). J. Phys. Chem. 82, 4176–4182

    Article  Google Scholar 

  26. Schwan, H.P. (1977). Ann. N.Y. Acad. Sei. 103, 198–213

    Google Scholar 

  27. Schwan, H.P., Schwarz, G., Maczuk, J., and Täuly, H. (1962). J. Phys. Chem. 66, 2626–2635

    Article  CAS  Google Scholar 

  28. Schwarz, G. (1962). J. Phys. Chem. 66, 2636–2642

    Article  CAS  Google Scholar 

  29. Dukhin, S.S. (1971). Surf. Coll. Sei. 3, 83–165

    CAS  Google Scholar 

  30. Einolf, C.W., Carstensen, E.L. (1973). Biophys. J. JL3, 8–13

    Google Scholar 

  31. Shepherd, J.C.W. and Biildt, G. (1979). Biochim. Biophys. Acta 558, 41–47

    Google Scholar 

  32. Pennock, B.E. and Schwan, H.P. (1969). J. Phys. Chem. 73, 2600–2610

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimmermann, U., Arnold, W.M. (1983). The Interpretation and Use of the Rotation of Biological Cells. In: Fröhlich, H., Kremer, F. (eds) Coherent Excitations in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69186-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69186-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69188-1

  • Online ISBN: 978-3-642-69186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics