Advertisement

Long-range Energy Continua in the Living Cell: Protochemical Considerations

  • G. Rickey Welch
  • Michael N. Berry
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

When we approach life at the level of the single cell and enter the domain of cellular biochemistry/biophysics, we find (contrary to the picture given in standard textbooks) a highly fragmented status rerum, largely dominated by an air of reductionism (viz., 1+1 = 2). Most attempts at understanding the essence of the “living state” at this level have a materialistic basis. Such an outlook all too often fails to relate the fact, that living systems are, by their nature, defined in a dynamic sense. Hence, we should study the cell by “reducing” it, not to its elements of matter, rather to its elementary processes. A “process” view imparts an emphasis on energetics and energy flow. Here, we are obliged to apply a lesson gleaned from physics — that of matter/energy duality in physical systems. One finds, that matter is the substance of things, while energy is the moving principle /2/.

Keywords

Enzyme Molecule Organize State Intermediary Metabolism Mobile Proton Energy Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pagels, H.R. (1982). The Cosmic Code; Quantum Physics as the Language of Nature. New York: Simon and Schuster.Google Scholar
  2. 2.
    Zuidgeest, M. (1977). Acto Biotheor. 26, 30.CrossRefGoogle Scholar
  3. 3.
    Lumry, R. and Biltonen, R. (1969). In Structure and Stability of Biological Macromolecules /S.N. Timasheff and G.D. Fasman, eds.), p. 65. New York: Dekker.Google Scholar
  4. 4.
    Lumry, R. (1971). In Electron and Coupled Energy Transfer in Biological Systems (T. King and M. Klingenberg, eds.), p. 1, New York: Bekker.Google Scholar
  5. 5.
    Welch, G.R. (1977). Prog. Biophys. Mol. Biol. 32, 103.PubMedCrossRefGoogle Scholar
  6. 6.
    Welch, G.R. and Keleti, T. (1981). J. Theor. Biol. 93, 701.PubMedCrossRefGoogle Scholar
  7. 7.
    Berry, M.N. (1981). FEBS Lett. 134, 133.PubMedCrossRefGoogle Scholar
  8. 8.
    Zalokar, M. (1960). Exp. Cell Res. 19, 114.PubMedCrossRefGoogle Scholar
  9. 9.
    Kempner, E.S. and Miller, J.H. (1968) Exp. Cell Res. 51, 150.PubMedCrossRefGoogle Scholar
  10. 10.
    Coleman, R. (1973). Biochem. Biophys. Acta 300, 1.PubMedGoogle Scholar
  11. 11.
    Sitte, P. (1980). In Cell Compartmentation and Metabolic Channeling (L. Nover, F. Lynen, and K. Mothes, eds.), p. 17. New York: Elsevier /North-Holland.Google Scholar
  12. 12.
    Srere, P. (1981). Trends Biochem. Sei. 6, 4.CrossRefGoogle Scholar
  13. 13.
    Schliwa, M., van Blerkom, J., and Porter, K.R. (1981). Proc. Nat. Acad. Sei. USA 78, 4329.PubMedCrossRefGoogle Scholar
  14. 14.
    Peters, R.A. (1930). Trans. Faraday Soc. 26, 797.CrossRefGoogle Scholar
  15. 15.
    De Duve, C. (1964). J. Theor. Biol. 6, 33.PubMedCrossRefGoogle Scholar
  16. 16.
    McClare, C.W.F. (1974). Ann. N.Y. Acad. Sei. 227, 74.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitchell, P. (1979). Eur. J. Biochem. 95, 1.PubMedCrossRefGoogle Scholar
  18. 18.
    Morowitz, H.J. (1978). Amer. J. Physiol. 235, R99.PubMedGoogle Scholar
  19. 19.
    Gutfreund, H. (1976). FEBS Lett. 62, (Suppl.), El.Google Scholar
  20. 20.
    Fersht, A. (1977). Enzyme Structure and Mechanism. San Francisco: Freeman.Google Scholar
  21. 21.
    Warshel, A. (1978). Proc. Nat. Acad. Sei. USA 75, 5250.PubMedCrossRefGoogle Scholar
  22. 22.
    Welch, G.R., Somogyi, B., and Damjanovich, S. (1982). Prog. Biophys. Mol. Biol. 39, 109.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang, J.H. (1968). Science 161, 328.PubMedCrossRefGoogle Scholar
  24. 24.
    Metzeler, D.E. (1979). Adv. Enzymol. 50, 1.Google Scholar
  25. 25.
    Hol, W.G.J., van Duijenen, P.T., and Berendsen, H.J.C. (1978). Nature (London), 273, 443.CrossRefGoogle Scholar
  26. 26.
    van Duijnen, P.T. and Thole, B.T, (1981). Chem. Phys. Lett. 83, 129.CrossRefGoogle Scholar
  27. 27.
    Krimm, S. and Dwivedi, A.M. (1982). Science 216, 407.PubMedCrossRefGoogle Scholar
  28. 28.
    Dunker, A.K. (1982). J. Theor. Biol. 97, 95.PubMedCrossRefGoogle Scholar
  29. 29.
    Scott, A.C. (1981). In Nonlinear Phenomena in Physics and Biology (R.H. Enns et al., eds.), p. 7. New York: Plenum Press.Google Scholar
  30. 30.
    Nagle, J.F. and Morowitz, H.J. (1978). Proc. Nat. Acad. Sei. USA 75, 298.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagle, J.F., Mille, M., and Morowitz, H.J. (1980). J. Chem. Phys. 72, 3959.CrossRefGoogle Scholar
  32. 32.
    Banacky, P. (1981). Biophys. Chem. 13, 39.PubMedCrossRefGoogle Scholar
  33. 33.
    Lewis, T.J. (1979). In Submolecular Biology and Cancer (Ciba Foundation Symposium No. 67 ). New York: Excerpta Medica.Google Scholar
  34. 34.
    Volkenstein, M.K. (1981). J. Theor. Biol. 89, 45.PubMedCrossRefGoogle Scholar
  35. 35.
    Conrad, M. (1979). J. Theor. Biol. 79, 137.PubMedCrossRefGoogle Scholar
  36. 36.
    Lumry, R. and Rosenberg, A. (1975). Coloques Internationaux du C.N.R.S. (No. 246 — “L’Eau et Les Systèmes Biologiques”), p.53.Google Scholar
  37. 37.
    Ikegami, A. (1977). Biophys. Chem. 6, 117.PubMedCrossRefGoogle Scholar
  38. 38.
    Caserta, G. and Cervigni T. (1974). Proc. Nat. Acad. Sei. USA 71, 4421.PubMedCrossRefGoogle Scholar
  39. 39.
    Berry, N.M., Grivell, A.R. and Wallace, P.G. In Comprehensive Treatise on Electrochemistry, Vol. 10, Bioelectrochemistry (S. Srinivasan and Y.A. Bhizmadzhev, eds.). New York: Plenum Press, in press.Google Scholar
  40. 40.
    Kell, D.B. (1979). Biochim. Biophys. Acta 549, 45.Google Scholar
  41. 41.
    Hopfinger, A.J. (1977). Intermolecular Interactions and Biological Organization. New York: Wiley.Google Scholar
  42. 42.
    Fröhlich, H. (1975). Proc. Nat. Acad. Sei. USA 72, 4211.PubMedCrossRefGoogle Scholar
  43. 43.
    Gutman, M and Nachliel, E. (1982). European Bioenergetics Conference (EBEC) Reports 2, 319.Google Scholar
  44. 44.
    Welch, G.R. (1977). J. Theor. Biol. 68, 267.PubMedCrossRefGoogle Scholar
  45. 45.
    Welch, G.R. Somogyi, B., Matko, J. and Papp, S. J. Theor. Biol., in press.Google Scholar
  46. 46.
    Fröhlich, H. (1970). Nature (London) 228, 1093.CrossRefGoogle Scholar
  47. 47.
    Hammes, G.G. (1982). Proc. Nat. Acad. Sei. USA 79, 6881.PubMedCrossRefGoogle Scholar
  48. 48.
    Benett, A.F., Buckley, P.D., and Blackwell, L.F. (1982). Biochemistry 21, 4407.CrossRefGoogle Scholar
  49. 49.
    Kell, D.B. and Morris, J.G. (1981). In Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri et al., eds.), p. 339. New York: Elsevier/North-Holland.Google Scholar
  50. 50.
    Friedrich, P. (1974). Acta Biochim. Biophys. Acad. Sei. Hung. 9, 159.PubMedGoogle Scholar
  51. 51.
    Weber, J.P. and Bernhard, S.A. (1982). Biochemistry 21, 4189.PubMedCrossRefGoogle Scholar
  52. 52.
    McLaren, A.D. (1960). Enzymologia 21, 356.Google Scholar
  53. 53.
    Sols, A. and Marco. R. (1970) Curr. Top. Cell. Regul. 2, 227.Google Scholar
  54. 54.
    Fripiat, J.J. and Cruz-Cumplido, M.I. (1974). Ann. Rev. Earth Plan Sei. 2, 239.CrossRefGoogle Scholar
  55. 55.
    Mortland, M.M. and Raman, K.V. (1968). Clay and Clay Mineral 16, 393.CrossRefGoogle Scholar
  56. 56.
    Good, W. (1973). J. Theor. Biol. 39, 249.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • G. Rickey Welch
    • 1
  • Michael N. Berry
    • 2
  1. 1.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA
  2. 2.Department of Clinical BiochemistryFlinders UniversityBedford ParkAustralia

Personalised recommendations