Skip to main content

Organization of the Outer Plexiform Layer of the Tetrapoda Retina

  • Conference paper
Progress in Sensory Physiology

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 4))

Abstract

The study of the functional organization of the first synapse of the centripetal visual pathway at the outer plexiform layer level (OPL) ought to be made through the application of combined histological, electrophysiological, and neurochemical techniques. A large amount of new evidence has been accumulated in the past 20 years on the structure of the retina and on the electrical responses of retinal cells to light stimulus. Also, recently, many substances considered as neurotransmitters in the brain have been found in the retina. The goal of the study of retinal function is to integrate the data obtained by structural and electrophysiological techniques and to identify and determine the role played by neurotransmitters or neuromodulators in the function of the retina.

The preparation of the manuscript as well as much of the personal research involved was supported by grant n° 2796/76 of the Comisión Asesora de Investigación Cientifíca y Técnica (Spain)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balbuena FF (1936) Conexiones de los conos y bastones al nivel de la plexiforme externa. Arch Oftalmol Hisp-Amer 35: 337–363

    Google Scholar 

  • Baron M, Gallego A (1982) The horizontal cells of the falconidae retina. In: Hollyfied JG (ed) Structure of the eye, 4th edn. Elsevier, pp 165–173

    Google Scholar 

  • Baylor DA (1974) Lateral interaction between vertebrate photoreceptors. Fed Proc 33: 1074–1077

    PubMed  CAS  Google Scholar 

  • Baylor DA, Hodgkin AL (1973) Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol 234: 163–198

    PubMed  CAS  Google Scholar 

  • Baylor DA, Fuortes MGF, O’Bryan PM (1971) Receptive fields of cones in the retina of the turtle. J Physiol 214: 265–294

    PubMed  CAS  Google Scholar 

  • Boycott BB, Hopkins JM (1981) Microglia in the retina of monkey and other mammals retina, its distinction from other types of glia and horizontal cells. Neuroscience 6: 679–688

    Article  PubMed  CAS  Google Scholar 

  • Boycott BB, Kolb H (1973) The horizontal cells of the rhesus monkey retina. J Comp Neurol 148: 115–140

    Article  PubMed  CAS  Google Scholar 

  • Boycott BB, Dowling JE, Fisher SK, Kolb H, Laties AM (1975) Interplexiform cells of the mammalian retina and their comparison with catecholamine-containing retinal cells. Proc R Soc Lond [Biol] 191: 353–368

    Article  CAS  Google Scholar 

  • Brown KT, Murakami M (1968) Rapid effects of light and dark adaptation upon the receptive field organization of S potentials and late receptor potentials. Vision Res 8: 1145–1171

    Article  PubMed  CAS  Google Scholar 

  • Cajal SR (1888) Estructura de la retina de las aves. Rev Trim Histol Norm Patol 2

    Google Scholar 

  • Cajal SR (1893) La rĂ©tine des vertebrĂ©s. La Cellule 9–119

    Google Scholar 

  • Cajal SR (1933) Los problemas histofisiolĂłgicos de la retina. XIV Concilium Optalmologicum Madrid, pp 1–19

    Google Scholar 

  • Cajal SR (1904) Textura del sistema nervioso del hombre y de los vertebrados. Moya, Madrid, p 595

    Google Scholar 

  • Copenhagen DR, Owen WG (1976) Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. J Physiol 259: 251–282

    PubMed  CAS  Google Scholar 

  • Crescitelli F (1972) The visual cells and visual pigments of the vertebrate eye. Springer, Berlin Heidelberg New York pp 245–363 (Handbook of sensory physiology, vol 7/1.)

    Google Scholar 

  • Custer NV (1973) Structurally specialized contacts between the photoreceptors of the retina of the axolote. J Comp Neurol 151: 35–56

    Article  PubMed  CAS  Google Scholar 

  • De Robertis E, Franchi CM (1956) Electron microscopy observations on synaptic vesicles in synapses of the retinal rods and cones. J Biophys Biochem Cytol 2: 307–318

    Article  Google Scholar 

  • Dowling JE, Ehinger B (1975) Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas. Science 188: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE, Brown JE, Major D (1966) Synapses of horizontal cells in rabbit and cat retinas. Science 153: 1639–1641

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE, Ehinger B, Floren I (1980) Fluorescence and electron microscopical observations of the amine-accumulating neurons of the Cebus monkey retina. J Comp Neurol 192: 665–685

    Article  PubMed  CAS  Google Scholar 

  • Ehinger B (1966) Adrenergic retinal neurons. Z Zellforsch Mikrosk Anat 71: 146–152

    Article  Google Scholar 

  • Ehinger B, Falk B (1969) Morphological and pharmacohistochemical characteristics of adrenergic retinal neurons of some mammals. Albrecht von Graefes Arch Klin Exp Ophthalmol 178: 295–305

    Article  PubMed  CAS  Google Scholar 

  • Ehinger B, Floren I (1976) Indoleamine-accumulating neurons in the retina of rabbit, cat and goldfish. Cell Tissue Res 175: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Fain GL (1975) Interactions of rod and cone signals in the mud puppy retina. J Physiol 252: 735–769

    PubMed  CAS  Google Scholar 

  • Fain GL, Gold GH, Dowling JE (1976) Receptor coupling in the toad retina. Cold Spring Harbor Symp Quant Biol 15: 547–561

    Google Scholar 

  • Fisher SK, Boycott BB (1974) Synaptic connections made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proc R Soc Lond [Biol] 186: 317–331

    Article  CAS  Google Scholar 

  • Foerster MH, Van De Grind WA, Grusser OJ (1977) The response of cat horizontal cells to flicker stimuli of different area, intensity and frequency. Exp Brain Res 29: 367–385

    PubMed  CAS  Google Scholar 

  • Fuortes MGF (1972) Responses of cones and horizontal cells in the retina of the turtle. Invest Ophthalmol Vis Sci 11: 275–287

    CAS  Google Scholar 

  • Fuortes MG, Simon EJ (1974) Interactions leading to horizontal cell responses in the turtle retina. J Physiol 240: 177–198

    PubMed  CAS  Google Scholar 

  • Gallego A (1953) Procedimiento de impregnaciĂłn argĂ©ntina de la retina entera. An Inst Farmacol Esp 2: 171–176

    CAS  Google Scholar 

  • Gallego A (1964) Description d’une nouvelle couche cellulaire dans la rĂ©tine des mammiferes et son rĂ´le fonctionnel possible. Bull Assoc Anat (Nancy) 49: 624–631

    Google Scholar 

  • Gallego A (1965) Connexions transversales au niveau des couches plexiformes de la rĂ©tine. Actual Neurophysiol 6: 5–27

    Google Scholar 

  • Gallego A (1971) Horizontal and amacrine cells in the mammals retina. Vision Res 11: 33–50

    Article  Google Scholar 

  • Gallego A (1975) Las cĂ©lulas horizontales de la retina de los vertebrados. Real Academia Nacional de Medicina, Instituto de España, Madrid

    Google Scholar 

  • Gallego A (1976a) Comparative study of the horizontal cells in the vertebrate retina: mammals and birds. In: Zettler F, Weiler R (eds) Neural principles in vision. Springer, Berlin Heidelberg New York pp 26–62

    Chapter  Google Scholar 

  • Gallego A (1976b) La microglia de la retina. An R Acad Nac Med (Madr) 93: 2–17

    Google Scholar 

  • Gallego (1977) ParticipaciĂłn de las cĂ©lulas horizontales amacrinas en el procesamiento de la informaciĂłn visual. Neurobiologia 25: 41–54

    Google Scholar 

  • Gallego A (1978) Mecanismos neurales de adaptaciĂłn visual a nivel de la capa plexiforme externa de la retina. FundaciĂłn Juan March, Serie Universitaria 52, Madrid

    Google Scholar 

  • Gallego A (1982) Organization of the outer plexiform layer of the tetrapoda retina: horizontal cells of mammals and avian retina. In: Hollyfield JG (ed) Structure of the eye, vol 4. Elsevier, pp 151–164

    Google Scholar 

  • Gallego A, Perez Arroyo M (1976) Photoreceptors and horizontal cells of the turtle retina. In: Yamada, Mishima (eds) The structure of the eye III. 5: 311–317

    Google Scholar 

  • Gallego A, Sobrino JA (1975) Horizontal cells of the monkey retina. Vision Res 15: 747–748

    Article  PubMed  CAS  Google Scholar 

  • Gallego A, Baron M, Gayoso M (1975a) Organization of the outer plexiform layer of the diurnal and nocturnal bird retina. Vision Res 15: 1027–1028

    Article  PubMed  CAS  Google Scholar 

  • Gallego A, Baron M, Gayoso M (1975b) Horizontal cells of the avian retina. Vision Res 15: 1029–1030

    Article  PubMed  CAS  Google Scholar 

  • Genis-Galvez JM, Prada F, Armengol J A (1979) Evidence of three types of horizontal cells in the chick retina. Jpn J Ophthalmol 23: 378–387

    Google Scholar 

  • GrĂĽsser OJ (1960) Receptorabhängige Potentiale der Katzenretina und ihre Reaktion auf Flimmerlicht. PflĂĽgers Arch 217: 511–525

    Article  Google Scholar 

  • Kaneko A (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol 207: 623–633

    PubMed  CAS  Google Scholar 

  • Kaneko A (1971) Electrical connections between horizontal cells in the dogfish retina. J Physiol 213: 95–105

    PubMed  CAS  Google Scholar 

  • Kolb H (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi impregnated cells. Philos Trans R Soc London [Biol] 258: 261–283

    Article  Google Scholar 

  • Kolb H (1974) The connections between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi preparations. J Comp Neurol 155: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Kolb H (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopy observations. J Neurocytol 6: 131–153

    Article  PubMed  CAS  Google Scholar 

  • Kolb H (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopy observations. J Neurocytol 6: 131–153

    Google Scholar 

  • Kolb H, Mariani A, Gallego A (1980) A second type of horizontal cell in the monkey retina. J Comp Neurol 189: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Lamb TD, Simon EJ (1976) The relation between intercellular coupling and electrical noise in turtle photoreceptors. J Physiol 262: 257–286

    Google Scholar 

  • Leeper HF (1978a) Horizontal cells of the turtle retina i. Light microscopy of Golgi preparations. J Comp Neurol 182: 777–794

    Article  PubMed  CAS  Google Scholar 

  • Leeper HF (1978b) Horizontal cells of the turtle retina II. Analysis of interconnections between photoreceptor cells and horizontal cells by light microscopy. J Comp Neurol 182: 795–809

    Article  PubMed  CAS  Google Scholar 

  • Leeper HF, Copenhagen DR (1979) Mixed rod-cone responses in horizontal cells of snapping turtle retina. Vision Res 19:407–412

    Article  PubMed  CAS  Google Scholar 

  • Marc RE, Lam DMK (1981) Glycinergic pathways in the goldfish retina. J Neurosci 1: 152–165

    PubMed  CAS  Google Scholar 

  • Mariani AP (1982) Biplexiform cells: Ganglion cells of the primate retina that contact photoreceptors. Science 216: 1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Mariani AP, Leure-Dupree AE (1977) Horizontal cells of the pigeon retina. J Comp Neurol 175: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Hashimoto Y, Saito T, Tohita T (1973) Physiological and morphological identification of L– and C–type S potentials in the turtle retina. Vision Res 13: 443–447

    Article  PubMed  CAS  Google Scholar 

  • Missotten L (1965) The synapses in the human retina. In: Rohen SW (ed) Structure of the eye II, Symposium Schattauer, Stuttgart, pp 17–28

    Google Scholar 

  • Missotten L, Appelmans M, Michiels J (1963) L’ultra–structure des synapses des cellules visuelles de la retine humaine. Bull Mem Soc Fr Ophtalmol 76: 59–82

    PubMed  CAS  Google Scholar 

  • Mitarai G, Svaetichin G, Vallecalle E, Fatehchand R, Villegas J, Laufer M (1961) Glianeuron interactions and adaptational mechanisms of the retina. In: Jung R, Kormhuber H (eds) The visual system: Neurophysiology and psychophysics. Springer, Berlin Heidelberg New York, pp 463–481

    Google Scholar 

  • Molenaar J (1981) Intracellular light responses in the intact in vivo eye of the cat. PhD dissertation, University of Amsterdam, The Netherlands

    Google Scholar 

  • Naka KI, Rushton WAH (1967) The generation and spread of S potentials in fish (Cyprinidae). J Physiol 192: 437–461

    PubMed  CAS  Google Scholar 

  • Negishi K, Drujan BD (1978) Effects of catecholamines on the horizontal cell membrane potential in the fish retina. Sens Processes 2: 388–395

    PubMed  CAS  Google Scholar 

  • Nelson R (1977) Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol 172:109–136

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Lutzow Av, Kolb H, Gouras P (1975) Horizontal cells in cat retina with independent dendritic systems. Science 189: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Kolb H, Famiglieti EV, Gouras P (1976) Neural responses in the rod and cone systems of the cat retina: Intracellular records and procion stains. Invest Ophthalmol Vis Sci 15: 946–953

    Google Scholar 

  • Niemeyer G (1975) The function of the retina in the perfused eye. Doc Ophthalmol 39: 53–116

    Article  PubMed  CAS  Google Scholar 

  • Norman RA, Kolb H (1981) Anatomy and physiology of the horizontal cells of the visual streak region of the turtle retina. Vision Res 21: 1585–1588

    Article  Google Scholar 

  • Orellana JM, Gallego A (1959) Distribucion topografica de las celulas horizontales de la retina. Actas Soc Esp Cienc Fisiol 5:251 –252

    Google Scholar 

  • Piccolino M, Neyton J, Witkovsky P, Gerschenfeld HM (1982) GAB A antagonists decrease functional communication between L–horizontal cells of turtle retina. Neruosci Lett [Suppl] 10: 387–388

    Google Scholar 

  • Polyak S (1941) The retina. University of Chicago Press, Chicago

    Google Scholar 

  • Raviola E, Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci USA 70: 1677–1681

    Article  PubMed  CAS  Google Scholar 

  • Simon EJ (1973) Two types of luminosity horizontal cells in the retina of the turtle. J Physiol 230: 199–211

    PubMed  CAS  Google Scholar 

  • Simon EJ (1974) Feedback loop between cones and horizontal cells in the turtle retina. Fed Proc 33: 1078–1082

    PubMed  CAS  Google Scholar 

  • Simon EJ, Lamb TD, Hodgkin AL (1975) Spontaneous voltage fluctuations in retinal cones and bipolar cells. Nature 256: 661–662

    Article  PubMed  CAS  Google Scholar 

  • Sjöstrand FS (1953) The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J Cell Comp Physiol 42: 45–70

    Article  Google Scholar 

  • Sjöstrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2: 122–170

    Article  PubMed  Google Scholar 

  • Sobrino J A, Gallego A (1970) CĂ©lulas amacrinas de la capa plexiforme externa de la retina. Actas Soc Esp Cienc Fisiol 12: 373–375

    Google Scholar 

  • Steinberg RH (1969) Rod-cone interaction in S potentials from the cat retina. Vision Res 9: 1331–1344

    Article  PubMed  CAS  Google Scholar 

  • Steinberg RH (1971) Incremental responses to light recorded from epithelial cells and horizontal cells of the cat retina. J Physiol 217: 93–110

    PubMed  CAS  Google Scholar 

  • Steinberg RH, Schmidt R (1970) Identification of horizontal cells as S-potential generators in the cat retina by intracellular dye injection. Vision Res 10: 817–820

    Article  PubMed  CAS  Google Scholar 

  • Stell WK (1965) Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat Rec 153: 389–397

    Article  PubMed  CAS  Google Scholar 

  • Stell WK (1967) The structure and relationship of horizontal cells and photoreceptor bipolar synaptic complexes in goldfish retina. Am J Anat 120: 401–423

    Article  Google Scholar 

  • Stephan P, Weiler R (1981) Morphology of horizontal cells in the frog retina. Cell Tissue Res 221: 443–449

    Article  PubMed  CAS  Google Scholar 

  • Svaetichin G (1953) The cone action potential. Acta Physiol Scand 29 [Suppl 106]: 565–600

    Google Scholar 

  • Svaetichin G, McNichol EF (1958) Retinal mechanisms for chromatic and achromatic vision. Ann NY Acad Sci 74: 385–404

    Article  Google Scholar 

  • Svaetichin G, Negishi K, Fatehchand R, Drujan B, Selvin De Testa A (1965) Nervous function based on interactions between neuronal and non-neuronal elements. Prog Brain Res 15: 243–266

    Article  PubMed  CAS  Google Scholar 

  • TarrĂ©s MAG (1982) Capa plexiforme de la retina de las aves. PhD dissertation, Universidad Complutense, Madrid

    Google Scholar 

  • Toyoda J, Hashimoto H, Anno H, Tomita T (1970) The rod response on the frog as studied by intracellular recording. Vision Res 10: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Werblin FS, Dowling JE (1969) Organization of the retina of the mud puppy, Necturus maculosus II. Intracellular recording. J Neurophysiol 32: 339–355

    PubMed  CAS  Google Scholar 

  • West RW (1978) Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections. Vision Res 18: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Whitten DN, Brown KT (1973) Photopic suppression of monkey’s rod receptor, apparently by a cone-initiated lateral inhibition. Vision Res 13: 1629–1658

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gallego, A. (1983). Organization of the Outer Plexiform Layer of the Tetrapoda Retina. In: Ottoson, D., Autrum, H., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69163-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69163-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69165-2

  • Online ISBN: 978-3-642-69163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics