Comparison of Beam Scanning Systems

  • N. Turner
Conference paper
Part of the Springer Series in Electrophysics book series (SSEP, volume 11)


Present day ion implanters provide uniform distribution of energetic ions into target materials, utilizing one or two of the basic beam scanning techniques; electrostatic, magnetic, and mechanical. Each beam scanning technique has physical limits and characteristics which affect its successful use in an ion implanter for semiconductor processing. This paper reviews the features and limits of each beam scanning technique. X-Y beam scanning systems using magnetic and electrostatic deflection are described. The ability for electrostatic X-Y scanning of μ perv.*, is reviewed and results reported.


Beam Spot Size Nuclear Instrument High Current Beam Electrostatic Deflection Beam Power Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.G. Wilson and G.R. Brewer, Ion Beams With Application to Ion Implantation. N.Y. Wiley 1973.Google Scholar
  2. 2.
    P. Grivet, Electron Optics, Academic Press, N.Y. 1965.Google Scholar
  3. 3.
    Varian/Extrion, Model DF-3000 Ion ImplanterGoogle Scholar
  4. 4.
    Varian/Extrion, Model 80-10 Ion ImplanterGoogle Scholar
  5. 5.
    L. Frenkel, J. Res. N.B.S. C eng. Instr, 64C No. 2, 1960Google Scholar
  6. 6.
    P.H. Rose, Radiation Effects, Vol 44. pp. 137–144, 1979CrossRefGoogle Scholar
  7. 7.
    G. Ryding, Nuclear Instr. and Methods, 189, pp. 239–251, 1981ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Kranik, Radiation Effects, Vol 44. pp. 81–92, 1979CrossRefGoogle Scholar
  9. 9.
    Extrion, Model 200-1000 Ion ImplanterGoogle Scholar
  10. 10.
    A.I.T., Series III, Ion ImplanterGoogle Scholar
  11. 11.
    G.I. Robertson, J. Electrochem, Soc., Solid State Science & Technology 796, June 1975.Google Scholar
  12. 12.
    Accelerators, Inc., Ion ImplanterGoogle Scholar
  13. 13.
    Balzers, Inc. Scannibal Ion ImplanterGoogle Scholar
  14. 14.
    P.R. Hanley, Nuclear Instruments and Methods, 189, pp. 227–237, 1981ADSCrossRefGoogle Scholar
  15. 15.
    G. Ryding, private communicationGoogle Scholar
  16. 16.
    J. Keller, Radiation Effects, Vol.44, pp. 71–80, Gordan & Breach Science Publishers, 1979Google Scholar
  17. 17.
    D.S. Perloff, F.E. Wahl and J.T. Kere, Proc. 7th Int. Conference on Electron and Ion Beam Science and Technology, Princeton, N.J., 1976Google Scholar
  18. 18.
    N. Turner, Nuclear Instruments and Methods 189, pp. 311–318, 1981ADSCrossRefGoogle Scholar
  19. 19.
    H. Glawischnig et al, Nuclear Instruments and Methods 189, pp. 291–294, 1981ADSCrossRefGoogle Scholar
  20. 20.
    E. Rogers, Nuclear Instruments and Methods 189, pp. 305–310, 1981ADSCrossRefGoogle Scholar
  21. 21.
    N. Turner, U.S. Patent No. 4, 283, 631Google Scholar
  22. 22.
    J. Keller, Nuclear Instruments and Methods 139, pp. 41–45, 1976ADSCrossRefGoogle Scholar
  23. 23.
    R. Booth, H.W. LeFevre, Nuclear Instruments and Methods, 151, pp. 143–147, 1978ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Zhukov, A.I. Morozov, G.1/a Shehepkin, ZHETP Pis Red 9, 1969 24; JETP Litt 9 (1969) 14Google Scholar
  25. 25.
    R. Booth, H.W. LeFevre, Nuclear Instruments and Methods, 151, pp. 143–147, 1978ADSCrossRefGoogle Scholar
  26. 26.
    P. Hanley, proceedings from this conferenceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • N. Turner
    • 1
  1. 1.Varian/Extrion DivisionGloucesterUSA

Personalised recommendations