Skip to main content

Kinetics and Thermodynamics of Reactions Catalyzed by Penicillin Acylase — Type Enzymes

  • Conference paper
Enzyme Technology

Summary

The thermodynamics and mechanism of reactions catalyzed by penicillin acylase-type enzymes, as seen at present, are outlined. Most if not all that is known about these proteins is consistent with the view that they are hydrolases of both esters and amides of α-aminoacids like phenyglycine and, in some cases, also of structurally related compounds like phenylacetic acid. They apparently react, like chymotrypsin, via an acyl-enzyme intermediate which then transfers the acyl group to water, amines or alcohols as receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rolinson GN, Batchelor FR, Butterworth D, Cameron-Wood J, Cole M, Eustace GC, Hart MV, Richards M, Chain EB (1960) Nature 187: 236

    Article  Google Scholar 

  2. Kaufmann W, Bauer K (1960) Naturwissenschaften 40: 474

    Article  Google Scholar 

  3. Claridge CA, Gourevitch A, Lein J (1960) Nature 187: 237

    Article  Google Scholar 

  4. Matsumoto K (1980) Hakko to Kogyo 38: 216

    Google Scholar 

  5. Okachi R (1979) Nippon Nogei Kagaku Kaishi 53: R169

    Article  Google Scholar 

  6. Vandamme EJ (1977) Adv Appl Microbiol 21: 89

    Article  Google Scholar 

  7. Vandamme EJ, Voets JP (1974) Adv Appl Microbiol 17: 311

    Article  Google Scholar 

  8. Vandamme EJ (1981) J Chem Tech Biotechnol 31: 637

    Article  Google Scholar 

  9. Kato K (1980) Agric Biol Chem 44: 1083

    Article  Google Scholar 

  10. Svedas VK, Margolin AL, Berezin IV (1980) Enz Microbiol Technol 2: 138

    Article  Google Scholar 

  11. Konecny J (1981) Biotechnol Letters 3: 107

    Google Scholar 

  12. Svedas VK, Margolin AL, Borisov EL, Berezin IV (1980) Enz Microbiol Technol 2: 313

    Article  Google Scholar 

  13. Konecny J, Sieber M, Schneider A (1981) Biotechnol Letters 3: 507

    Article  Google Scholar 

  14. Konecny J, Sieber M, Schneider A (in press) Biotechnol Bioeng

    Google Scholar 

  15. McDougal B, Dunnill P, Lilly MD (1982) Enz Microb Technol 4: 114

    Article  Google Scholar 

  16. Semenov AM, Martinek K, Shvyadas VYu, Margolin AL, Berezin IV (1981) Dokl Akad Nauk SSSR 258: 1124

    Google Scholar 

  17. Takahashi T, Kato K, Yamazaki Y, Isono M (1977) J Antibiotics 30 Suppl, 230

    Google Scholar 

  18. Takasawa S, Okachi R, Kawamoto I, Yamamoto M, Nara T (1972) Agr Biol Chem 36: 1701

    Article  Google Scholar 

  19. Okachi R, Kawamoto I, Yamamoto M, Takasawa S, Nara T (1973) Agr Biol Chem 37: 335

    Article  Google Scholar 

  20. Bondareva NS, Levitov MM, Rabinovitsch MS (1969) Biokhimia (Engl transl) 34: 378

    Google Scholar 

  21. Chiang C, Bennett RE (1967) J Bacteriol 93: 302

    Google Scholar 

  22. Balasingham K, Warburton D, Dunnill P, Lilly MD (1972) Biochim Biophys Acta 276: 250

    Google Scholar 

  23. Kutzbach C, Rauenbusch E (1974) Z Physiol Chem 354: 45

    Article  Google Scholar 

  24. Margolin AL, Svedas VK, Berezin IV (1980) Biochim Biophys Acta 616: 283

    Google Scholar 

  25. Okachi R, Nara T (1973) Agr Biol Chem 37: 2797

    Article  Google Scholar 

  26. Shimizu M, Okachi R, Kimura K, Nara T (1975) Agr Biol Chem 39: 1655

    Article  Google Scholar 

  27. Kato K, Kawahara K, Takahashi T, Kakinuma A (1980) Agric Biol Chem 44: 1075

    Article  Google Scholar 

  28. Takahashi T, Yamazaki Y, Kato K (1974) Biochem J 137: 497

    Google Scholar 

  29. Marconi W, Bartoli F, Cecere F, Galli G, Morisi F (1975) Agric Biol Chem 39: 277

    Article  Google Scholar 

  30. Antonov VK (1981) in “Proteinases and their Inhibitors” (Turk V, Vitale L eds), p 141, Pergamon Press, Oxford

    Google Scholar 

  31. Fujii T, Matsumoto K, Watanabe T (1976) Process Biochem 11 [8]: 1

    Google Scholar 

  32. Okachi R, Kato F, Miyamura Y, Nara T (1973) Agr Biol Chem 37: 1953

    Article  Google Scholar 

  33. Shimizu M, Masuike T, Fujita H, Kimura K, Okachi R, Nara T (1975) Agr Biol Chem 39: 1225

    Article  Google Scholar 

  34. Kato K, Kawahara K, Takahashi T, Igarazi S (1980) Agr Biol Chem 44: 821

    Article  Google Scholar 

  35. Kasche V, Galunsky B (1982) Biochem Biophys Res Comm 104: 1215

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Konecny, J. (1983). Kinetics and Thermodynamics of Reactions Catalyzed by Penicillin Acylase — Type Enzymes. In: Lafferty, R.M. (eds) Enzyme Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69148-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69148-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12479-5

  • Online ISBN: 978-3-642-69148-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics