Pharmacological Models of Depression

  • R. D. Porsolt
Part of the Dahlem Workshop Reports Life Sciences Research Report book series (DAHLEM, volume 26)


Pharmacological models of depression and tests for antidepressants are critically reviewed. Models where drugs are used to mimic depression include the syndromes induced by reserpine, alpha-methyl-paratyrosine (AMPT), 5-HTP, clonidine, neuroleptics, and the behavioral depression occurring after withdrawal of chronic amphetamine. Nonimitative pharmacological models include the potentiation by antidepressants of the effects of biogenic amines and sympathomimetic agents and the antagonism by antidepressants of apomorphine-induced hypothermia. Other models found useful for characterizing antidepressant activity include “behavioral despair,” muricide behavior, the bulbectomized rat syndrome, isolation-induced hyperactivity in rats, kindled amygdaloid convulsions, and REM sleep in cats. A major criterion for judging the validity of models is their response to treatments known to be effective in depression. The utility of models depends on their capacity either to elucidate some aspect of depressive illness or to discover newer and better antidepressant treatments.


Biogenic Amine Antidepressant Drug Antidepressant Activity Depressive Illness Pharmacological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Aprison, M. H.; Takahashi, R.; and Tachiki, K. 1978. Hypersensitive serotonergic receptors involved in clinical depression -a theory. In Neuropharmacology and Behavior, eds. B. Haber and M. H. Aprison, pp.23–53. New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
  2. (2).
    Babington, R. G. 1977. The pharmacology of kindling. In Animal Models in Psychiatry and Neurology, eds. I. Hanin and E. Usdin, pp. 141–149. Oxford: Pergamon Press.Google Scholar
  3. (3).
    Betin, C; de Feudis, F.V.; Blavet, N.; and Clostre, F. 1982. Further characterization of the behavioral despair test in mice: positive effects of convulsants. Physiol. Behav. 28: 307–311.PubMedCrossRefGoogle Scholar
  4. (4).
    Broekkamp, C.L.; Garrigou, D.; and Lloyd, K.G. 1980. Serotoninmimetic and antidepressant drugs on passive avoidance learning by olfactory bulbectomised rats. Pharmacol. Biochem. Behav. 13: 643–646.PubMedCrossRefGoogle Scholar
  5. (5).
    Cairncross, K.D.; Cox, B.; Forster, C; and Wren, A.F. 1978. A new model for the detection of antidepressant drugs: olfactory bulbectomy in the rat compared with existing models. J. Pharmacol. Meth. 1: 131– 143.CrossRefGoogle Scholar
  6. (6).
    Colpaert, F. C.; Lenaerts, F. M.; Niemegeers, C. J. E.; and Janssen, P.A.J. 1975. A critical study on RO-4-1284 antagonism in mice. Arch. Int. Pharmacodyn. 215: 40–90.PubMedGoogle Scholar
  7. (7).
    Delini-Stula, A.; Baumann, P.; and Biich, O. 1979. Depression of ex ploratory activity by clonidine in rats as a model for the detection of relative pre-and postsynaptic central noradrenergic receptor selectivity of alpha-adrenolytic drugs. Naunyn-Schmiedeberg’s Arch. Pharmacol. 307: 115–122.Google Scholar
  8. (8).
    De Montigny, D., and Aghajanian, G. K. 1978. Tricyclic antidepressants : long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science 202: 1303–1305.PubMedCrossRefGoogle Scholar
  9. (9).
    Garattini, S., and Jori, A. 1967. Interactions between imipramine-like drugs and reserpine on body temperature. In Antidepressant Drugs, eds. S.Garrattini and M.N.G. Dukes, pp. 179–193. Amsterdam: Excerpta Medica Foundation.Google Scholar
  10. 10.
    Garrigou, D.; Broekkamp, C.L.; and Lloyd, K.G. 1981. Involvement of the amygdala in the effect of antidepressants on the passive avoidance deficit in bulbectomised rats. Psychopharmacology 74: 66– 70.PubMedCrossRefGoogle Scholar
  11. 11.
    Garzon, J., and del Rio, J. 1981. Hyperactivity induced in rats by long-term isolation: further studies on a new animal model for the detection of antidepressants. Eur. J. Pharmacol. 74:287–294.PubMedCrossRefGoogle Scholar
  12. 12.
    Garzon, J.; Fuentes, J. A.; and del Rio, J. 1979. Antidepressants selectively antagonize the hyperactivity induced in rats by long-term isolation. Eur. J. Pharmacol. 59: 293–296.PubMedCrossRefGoogle Scholar
  13. 13.
    Gouret, C; Mocquet, G.; Coston, A.; and Raynaud, G. 1977. Interaction de divers psychotropes avec cinq effets de la reserpine chez la souris et chez le chat. J. Pharmacol. (Paris) 8: 330–350.Google Scholar
  14. 14.
    Gower, A.J., and Marriott, A.S. 1980, The inhibition of clonidineinduced sedation in the mouse by antidepressant drugs. Br. J. Pharmacol. 69: 287P–288P.Google Scholar
  15. 15.
    Green, A.R.; Heal, D.J.; Lister, S.; and Molyneux, S. 1982. The ef fect of acute and repeated desmethylimipramine administration on clonidine-induced hypoactivity in rats. Br. J. Pharmacol. 75: 33P.Google Scholar
  16. 16.
    Harlow, H.F., and McKinney, W.T. 1971. Non human primates and psychoses. J. Aut. Child. Schiz. 1: 368–375.CrossRefGoogle Scholar
  17. 17.
    Heel, R.C.; Morley, P.A.; Brogden, R.N.; Carmine, A.A.; Speight, T. M.; and Avery, G. S. 1982. Zimelidine: a review of its pharmacologi cal properties and therapeutic efficacy in depressive illness. Drugs 24: 169–206.PubMedCrossRefGoogle Scholar
  18. 18.
    Howard, J.L.; Soroko, F.E.; and Cooper, B.R. 1981. Empirical behavioral models of depression, with emphasis on tetrabenazine an tagonism. In Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives, eds. S.J. Enna, J.B. Malick, and E.Richelson, pp. 107 -120. New York: Raven Press.Google Scholar
  19. 19.
    Hunt, G.E.; Atrens, D.M.; and Johnson, G.F.S. 1981. The tetracyc lic antidepressant mianserin: evaluation of its blockade of presynaptic alpha-adrenoceptors in a self-stimulation model using clonidine. Eur. J. Pharmacol. 70: 59–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Jaffe, J. H. 1980, Drug addiction and drug abuse. In The Pharmaco logical Basis of Therapeutics, 6th ed., eds. A. G. Gilman, L. S. Goodman, and A. Gilman, pp. 535–584. New York: Macmillan.Google Scholar
  21. 21.
    Kitada, Y.; Miyauchi, T.; Satoh, A.; and Satoh, S. 1981. Effects of antidepressants in the rat forced swimming test. Eur. J. Pharmacol. 72: 145–152.PubMedCrossRefGoogle Scholar
  22. 22.
    Kokkinidis, L.; Zacharko, R.M.; and Predy, P. A. 1980. Postamphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol. Biochem. Behav. 13: 379–383.PubMedCrossRefGoogle Scholar
  23. 23.
    Kraemer, G.W., and McKinney, W. T. 1979. Interactions of pharmacological agents which alter biogenic amine metabolism and depression. J.Affect. Dis. 1:33–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Lapin, LP., and Mirzaev, S. 1979. Apomorphine hypothermia: diminution by group motor excitation and by tricyclic antidepressants, adrenergics and neuroleptics. J. Pharmacol. Meth. 2: 127–134.CrossRefGoogle Scholar
  25. 25.
    Lecrubier, Y.; Puech, A.J.; Jouvent, R.; Simon, P.; and Widlocher, D. 1980. A beta-adrenergic stimulant salbutamol vs. clomipramine in depression: a controlled study. Br. J. Psychiatry 136: 354–358.PubMedCrossRefGoogle Scholar
  26. 26.
    Lucki, I., and Frazer, A. 1982. Prevention of the serotonin syndrome in rats by repeated administration of monoamine oxidase inhibitors but not by tricyclic antidepressants. Psychopharmacology 77: 205–211.PubMedCrossRefGoogle Scholar
  27. 27.
    Lynch, M.A., and Leonard, B. E. 1978. Effect of chronic ampheta mine administration on the behavior of rats in the open field apparatus: reversal of post-withdrawal depression by two antidepressants. J. Pharm. Pharmacol. 30: 798–799.PubMedCrossRefGoogle Scholar
  28. 28.
    Maj, J. 1979. Pharmacological spectrum of some new antidepres sants. In Neuropharmacology, ed. C.Dumont, pp. 161–170. Oxford: Pergamon Press.Google Scholar
  29. 29.
    Malick, J. B. 1981. Yohimbine potentiation as predictor of antidepressant action. In Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives, eds. S.J. Enna, J.B. Malick, and E.Richelson, pp. 141–155. New York: Raven Press.Google Scholar
  30. 30.
    McKinney, W.T. 1977. Biobehavioral models of depression in monkeys. In Animal Models in Psychiatry and Neurology, eds. I. Hanin and E. Usdin, pp. 117–126. Oxford: Pergamon Press.Google Scholar
  31. 31.
    McKinney, W.T.; Eising, R.G.; Moran, E.C.; Suomi, S.J.; and Harlow, H. F. 1971. Effects of reserpine on the social behavior of rhesus monkeys. Dis. Nerv. Sys. 32: 735–741.Google Scholar
  32. 32.
    Miller, K.W.; Freeman, J.J.; Dingell, J.V.; and Sulser, F, 1970. On the mechanism of amphetamine potentiation by iprindole. Experientia 26: 863–864.PubMedCrossRefGoogle Scholar
  33. 33.
    Moller Nielsen, I. 1980. Tricyclic antidepressants: general pharmacology. In Psychotropic Agents. Part I. Antipsychotics and Antidepressants, eds. F. Hoffmeister and G. Stille, pp. 399–414. Berlin: Springer Verlag.Google Scholar
  34. 34.
    Nagayama, H.; Hingten, J. N.; and Aprison, M. H. 1981. Postsynaptic action by four antidepressive drugs in an animal model of depression. Pharmacol. Biochem. Behav. 15: 125–130.PubMedCrossRefGoogle Scholar
  35. 35.
    Noreika, L.; Pastor, G.; and Liebman, J. 1981. Delayed emergence of antidepressant efficacy following withdrawal in olfactory bulbectomized rats, Pharmacol. Biochem. Behav. 15: 393–398.PubMedCrossRefGoogle Scholar
  36. 36.
    Ogren, S.O.; Fuxe, K.; Agnati, L.F.; Gustafsson, J. A.; Jansson, G.; and Holm, A. C. 1979. Reevaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs. J. Neurol. Trans. 46:85–103.CrossRefGoogle Scholar
  37. 37.
    Pedersen, O.L.; Kragh-Sorensen, P.; Bjerre, M.; Overo, K.F.; and Gram, L.F. 1982. Citalopram, a selective serotonin reuptake inhibitor: clinical antidepressive and long-term effect -a phase II study. Psychopharmacology 77: 199–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Porsolt, R.D. 1981. Behavioral despair, In Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives, eds. S. J. Enna, J. B. Malick, and E. Richelson, pp. 121–139. New York: Raven Press.Google Scholar
  39. 39.
    Puech, A.J.; Chermat, R.; Poncelet, M.; Doare, L.; and Simon, P. 1981. Antagonism of hypothermia and behavioural response to apomorphine: a simple, rapid and discriminating test for screening antidepressants and neuroleptics. Psychopharmacology 75:84–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Robson, R. D.; Antonaccio, M.J.; Saelens, J. K.; and Liebman, J. 1978. Antagonism by mianserin and classical alpha-adrenoceptor blocking drugs of some cardiovascular and behavioral effects of clonidine. Eur. J. Pharmacol. 47:431–442.PubMedCrossRefGoogle Scholar
  41. 41.
    Sanghvf, I. S., and Gershon, S. 1977. Animal test models for prediction of clinical antidepressant activity. In Animal Models in Psychiatry and Neurology, eds. I. Hanin and E. Usdin, pp. 157–171. Oxford: Pergamon Press.Google Scholar
  42. 42.
    Scherschlicht, R.; Pole, P.; Schneeberger, J.; Steiner, M.; and Haefely, W. 1982. Selective suppression of rapid eye movement sleep (REMS) in cats by typical and atypical antidepressants. In Typical and Atypical Antidepressants: Molecular Mechanisms, eds. E.Costa and G. Racagni, pp. 359–364. New York: Raven Press.Google Scholar
  43. 43.
    Seltzer, V., and Tongre, S. R. 1975. Methylamphetamine withdrawal as a model for the depressive state: antagonism of post-amphetamine depression by imipramine. J. Pharm. Pharmacol: 27:16P.Google Scholar
  44. 44.
    Stach, R.; Lazarova, M.B.; and Kacz, D. 1980. The effects of antide pressant drugs on the seizures kindled from the rabbit amygdala. Pol. J. Pharmacol. Pharm. 32: 505–512.PubMedCrossRefGoogle Scholar
  45. 45.
    Valzelli, L. 1973. The “isolation syndrome” in mice. Psychopharmacology 31: 305–320.CrossRefGoogle Scholar
  46. 46.
    Van Riezen, H.; Schieden, H.G.; and Wren, A.F. 1977. Olfactory bulb ablation in the rat: behavioural changes and their reversal by antidepressant drugs. Br. J. Pharmacol. 60:521–528.PubMedCrossRefGoogle Scholar
  47. 47.
    Vogel, J. R. 1975. Antidepressants and mouse-killing (muricide) behavior. In Industrial Pharmacology. Antidepressants, eds. S. Fielding and H. Lai, vol.2, pp. 99–112. New York: Futura.Google Scholar
  48. 48.
    Von Voigtlander, P.F.; von Triezenberg, H.G.; and Losey, E.G. 1978. Interactions between clonidine and antidepressant drugs: a method for identifying antidepressant-like agents. Neuropharmacology 17: 375–381.CrossRefGoogle Scholar
  49. 49.
    Zetler, G. 1963. Die antikataleptische Wirksamkeit einiger Antidepressiva (Thymoleptica). Arzneim. Forsch. 13: 103–109.Google Scholar

Copyright information

© Berlin, Heidelberg, New York, Tokyo: Springer-Verlag. 1983

Authors and Affiliations

  • R. D. Porsolt
    • 1
  1. 1.Centre de Recherche DelalandeRueil MalmaisonFrance

Personalised recommendations