Skip to main content

Mineral Composition of Pelitic Sediments in the Rhenohercynian Zone

  • Conference paper
Book cover Intracontinental Fold Belts

Abstract

Pelitic sediments of the Rhenohercynian Zone were examined with regard to mineral composition by infrared spectroscopy. This method offers the possibility for exact and rapid quantitative analyses of sedimentary rocks containing illite, chlorite, kaolinite, quartz, feldspars and calcite. Ey their clay mineral/(quartz + feldspar)− ratios and their carbonate contents pelitic rocks were classified into three main types: common shales (215 samples), silty shales (131 samples) and calcareous shales (35 samples).

For each class the average mineral composition was determined. Thus, the average mineral composition of common shales over the whole stratigraphic sequences in the Phenohercynian basin comes to 60 % clay minerals (46 % illite, 13 % chlorite, 1 % kaolinite), 35 % quartz, 4 % feldspars, 1 % carbonate.

It has been found, especially for the common shales, that the average total clay contents in nearly all stratigraphic units remain more or less constant. Because the clay mineral fraction is predominantly composed of illite and chlorite which show a reciprocal development with time, an increase in chlorite is always compensated by a decrease in illite and vice versa. This is caused largely by different primary MgO contents in the stratigraphic units. In contrast to the MgO poor Ordovician and Gedinnian sediments, the higher MgO contents in the Upper Devonian sediments produced in the course of diagenesis and anchimetamorphism relatively more chlorite and less illite with a stronger phengitic character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Erindley, G.W. & Gillery, F.H. (1956) X-ray identification of chlorite species.- Amer. Miner. 41, 169–186.

    Google Scholar 

  • Engel, W., Flehmig, W. & Franke, W. (1981) Trends in the composition of Carboniferous greywackes and their bearing on orogenetic processes.- E. Schweizerbart sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Farmer, V.C. (1974) The layer silicates.- In: The infrared spectra of minerals (V.C. Farmer, ed.)- Mineralogical Soc. London.

    Google Scholar 

  • Flehmig, W. (1973) Kristallinität und Infrarotspektroskopie natürlicher dioktraedrischer Hüte.- N. Jb. Miner. Mh., 351–361.

    Google Scholar 

  • Flehmig, W. (1980) Zur Diagenese von Chloriten in Tonsteinen.- Fortschr. Miner., 58, 1, 32–33.

    Google Scholar 

  • Flehmig, W. & Kurze, F. (1973) Die quantitative infrarotspektroskopische Phasenanalyse von Mineralmengen,- F. Jb. Mineral. Abh., 119, 101–112.

    Google Scholar 

  • Heigl, J., Eell, M.F. & White, F.J. (1947) Application of infrared spectroscopy to the analysis of liquid hydrocarbons.- Anal. Chem., 19, 293–298.

    Article  Google Scholar 

  • Hey, M.H. (1954) A new review of the chlorites,- Mineral. Mag., 30, 277–292.

    Article  Google Scholar 

  • Leith, C. K. & Mead, W.J. (1915) Metamorphic geology.- Holt, Pinehart and Winston, 337 pp.

    Google Scholar 

  • Petruk, W. (1964) Determination of the heavy atom content in chlorite by means of X-ray diffractometer.- Amer. Mineral., 49, 61–71.

    Google Scholar 

  • Potts, W, J. (1963) Chemical infrared spectroscopy.- Vol. 1, Techniques. John Wiley & Sons, New York, Sidney.

    Google Scholar 

  • Schoen, F. (1962) Semi – quantative analysis of chlorites by X-ray diffration,- Amer. Mineral., 47, 1384–1392.

    Google Scholar 

  • Schulz-Dobrick, E. (1974) Chemischer Stoffbestand variskischer Geosynclinalablagerungen im Phenoherzynikum.- Dissertation Universität Göttingen.

    Google Scholar 

  • Shaw, D. & Weaver, C.E. (1965) The mineralogical composition of shales.- J. Sediment. Petrology, 35, 213–222.

    Google Scholar 

  • Starke, P. (1969) Bestimmung der mineralogischen Zusammensetzung des Tonschiefers T P durch quantitative Phasenanalyse.- Eer. Deutsch. Ges. geol. Wiss., E, Miner. Lagerstättenf., 14, 73–77.

    Google Scholar 

  • Stubican, P. (1969) Isomorphous substitution and infra-redspectra of the layer lattice silicates.- Amer. Mineral., 46, 32–51.

    Google Scholar 

  • Yaalon, D.H. (1962) Mineral composition of the average shale.- Clay Min. Bull., 5, 31–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flehmig, W. (1983). Mineral Composition of Pelitic Sediments in the Rhenohercynian Zone. In: Martin, H., Eder, F.W. (eds) Intracontinental Fold Belts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69124-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69124-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69126-3

  • Online ISBN: 978-3-642-69124-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics