Skip to main content

Coupling Stoichiometry and the Energetic Adequacy Question

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Historically, scientific consideration of the energetics of intestinal Na+-dependent transport systems has evolved through five distinct conceptual stages (see Table 1). The earliest stage involved recognition of a mechanistic role for Na+ (Riklis and Quastel 1958, Crane et al. 1961), Characterization of its kinetic effects (Crane et al. 1965, Curran et al. 1967, Goldner et al. 1969) and proposal of transport models which considered flow of Na+ down a gradient of chemical potential as the means of energy input to the transport system (for a review see Schultz and Curran 1970). These models typically involved membrane components with binding sites for both Na+ and an organic solute.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong WMcD, Byrd D, Hamang PM (1973) Energetic adequacy of Na+ gradients for sugar accumulation in epithelial cells of small intestine. Biochim Biophys Acta 330:237–241

    Article  PubMed  CAS  Google Scholar 

  • Beck JC, Sacktor B (1975) Energetics of the Na+-dependent transport of D-glucose in renal brush border membrane. J Biol Chem 250:8674–8680

    PubMed  CAS  Google Scholar 

  • Carter-Su C, Kimmich GA (1979) Membrane potentials and sugar transport by ATP-depleted intestinal cells: Effects of anion gradients. Am J Physiol 237:C67-C74

    PubMed  CAS  Google Scholar 

  • Carter-Su C, Kimmich G A (1980) Effect of the membrane potential on Na+-dependent sugar transport by ATP depleted intestinal cells. Am J Physiol 238:C73-C80

    PubMed  CAS  Google Scholar 

  • Crane RK, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars. In: Kleinzeller A, Kotyk A (eds) Membrane transport and metabolism. Academic Press, New York, pp 439–449

    Google Scholar 

  • Crane RK, Forstner G, Eicholz A (1965) Studies on the mechanism of the intestinal absorption of sugars. An effect of Na+ on the apparent Michaelis constant for intestinal sugar transport in vitro. Biochim Biophys Acta 109:467–477

    Article  PubMed  CAS  Google Scholar 

  • Curran PF, Schultz SG, Chez RA, Fuisz RC (1967) Kinetic relations of the Na+-amino acid interaction at the mucosal border of intestine. J Gen Physiol 50:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Gibb LE, Eddy AA (1972) An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites tumor cells with reversed sodium ion concentration gradients. Biochim J 129:979–981

    CAS  Google Scholar 

  • Goldner AM, Schultz SG, Curran PF (1969) Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol 53:362–383

    Article  PubMed  CAS  Google Scholar 

  • Hopfer U, Sigrist-Nelson K, Murer H (1975) Intestinal sugar transport: Studies with isolated plasma membranes. Ann NY Acad Sci 264:414–427

    Article  PubMed  CAS  Google Scholar 

  • Jacquez JA, Schafer JA (1969) Na+ and K+ electrochemical potentials and the transport of a-amino-isobutyric acid in Ehrlich ascites tumor cells. Biochim Biophys Acta 193:368–383

    Article  PubMed  CAS  Google Scholar 

  • Kessler M, Semenza G (1979) On the efficiency of energy conversion in sodium-driven D-glucose transport across small intestinal brush border membrane vesicles: An estimation. FEBS Lett 108:205–208

    Article  PubMed  CAS  Google Scholar 

  • Kimmich GA (1970) Active sugar accumulation by isolated intestinal epithelial cells: A new model for sodium-dependent metabolite transport. Biochemistry 9:3669–3677

    Article  PubMed  CAS  Google Scholar 

  • Kimmich GA (1973) Coupling between Na+ and sugar transport in small intestine. Biochim Biophys Acta 300:31–38

    PubMed  CAS  Google Scholar 

  • Kimmich GA (1981a) The Na+-dependent sugar carrier as a sensor of the cellular electrochemical Na+-potential. In: Dinno M (ed) Membrane biophysics: Structure and function in epithelia. Alan Liss, New York, pp 129–142

    Google Scholar 

  • Kimmich GA (1981b) Intestinal absorption of sugar. In: Johnson L (ed) Physiology of the gastrointestinal tract, vol 2. Raven Press, New York, pp 1035–1061

    Google Scholar 

  • Kimmich GA (1982) Intestinal transport of sugar - the energetics of epithelial “pump-leak” systems. In: Martonosi A (ed) Membranes and transport. Plenum Press, New York (in press)

    Google Scholar 

  • Kimmich GA, Carter-Su C (1978) Membrane potentials and the energetics of intestinal Na+-depen-dent transport systems. Am J Physiol 235:C73-C81

    PubMed  CAS  Google Scholar 

  • Kimmich G A, Randies J (1975) A Na+-independent phloretin sensitive monosaccharide transport system in isolated intestinal epithelial cells. J Membr Biol 23:57–76

    Article  PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1978) Phloretin-like action of bioflavanoids on sugar accumulation capability of isolated intestinal cells. Membr Biochem 1:221–237

    Article  PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1979) Energetics of sugar transport by isolated intestinal epithelial cells: Effects of cytochalasin B. Am J Physiol 237:C56-C63

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1980) Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Biochim Biophys Acta 596:439–444

    Article  PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1981) a-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium. Am J Physiol 241:C227-C232

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Carter-Su C, Randies J (1977) Energetics of intestinal Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials. Am J Physiol 233:E357-E362

    PubMed  CAS  Google Scholar 

  • Murer H (1976) Differences in amino acid and glucose transport between bruch border and baso-lateral plasma membrane of intestinal epithelial cells. J Cell Physiol 89:805–810

    Article  PubMed  Google Scholar 

  • Murer H, Hopfer U (1974) Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci USA 71:424–488

    Article  Google Scholar 

  • Potashner SJ, Johnstone RM (1971) Cation gradients, ATP and amino acid accumulation in Ehr-lich ascites tumor cells. Biochim Biophys Acta 233:91–103

    Article  PubMed  CAS  Google Scholar 

  • Randies J, Kimmich AG (1978) Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells. Am J Physiol 234:C64-C72

    Google Scholar 

  • Reid M, Gibb LE, Eddy AA (1974) Ionophore mediated coupling between ion fluxes and amino acid absorption in mouse ascites tumor cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate. Biochem J 140:383–393

    PubMed  CAS  Google Scholar 

  • Riklis E, Quastel JH (1958) Effect of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol 36:347–362

    Article  PubMed  CAS  Google Scholar 

  • Schafer JA, Heinz E (1971) The effect of reversal of Na+ and K+ electrochemical gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim Biophys Acta 249: 15–33

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG (1977) Sodium-coupled solute transport by small intestine: a status report. Am J Physiol 233:E249-E254

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50: 637–718

    PubMed  CAS  Google Scholar 

  • Sigrist-Nelson K, Murer H, Hopfer U (1975) Active adenine transport in isolated brush border membranes. J Biol Chem 250:5674–5680

    PubMed  CAS  Google Scholar 

  • Tucker AM, Kimmich GA (1973) Characteristics of amino acid accumulation by isolated intestinal epithelial cells. J Membr Biol 12:1–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kimmich, G. (1983). Coupling Stoichiometry and the Energetic Adequacy Question. In: Gilles-Baillien, M., Gilles, R. (eds) Intestinal Transport. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69109-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69109-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69111-9

  • Online ISBN: 978-3-642-69109-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics