Skip to main content

Effect of Galactose on Intracellular Potential and Sodium Activity in Urodele Small Intestine. Evidence for Basolateral Electrogenic Transport

  • Conference paper
Intestinal Transport

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

It has been appreciated for many years that the presence of Na+ in the intestinal lumen enhances and indeed is required for active sugar absorption by the small intestinal mucosa. Since the seminal observation (Riklis and Quastel 1958, Czaky and Thale 1960, Crane et al. 1961) was made there have been numerous studies aimed at characterizing the transport mechanism in the brush border. There is now wide acceptance for the view that Na+ and sugar are bound and cotransported on the same apical membrane carrier (Fig. la). More recently the way in which sugars are translocated across the basolateral membrane have received attention and these studies, pointing to facilitated diffusion of sugar, are serving to round out our view of transcellular sugar transport and sugar absorption. It has also been known for a long time that actively transported sugars stimulate the absorption of Na+ (Fig. lb). For example actively transported sugars increase the transepithelial electrical potential difference (ψms) which is measurable across the wall of the intestine (Barry et al. 1961, Baillien and Schoffeniels 1961, Clarkson et al. 1961, Schachter and Britten 1961). The short-circuit current (Isc) is similarly stimulated as illustrated in Fig. 2 without any early changes in tissues resistance. Phloridzin, which blocks sugar absorption (Newey et al. 1959) blocks the stimulation of Isc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong WMcD (1975) Electrophysiology of sodium transport by epithelial cells of the small intestine. In: Czaky TZ (ed) Intestinal absorption and malabsorption. Raven Press, New York, p 45

    Google Scholar 

  • Armstrong WMcD, Musselman DL, Reitzug HC (1970) Sodium, potassium and water content of isolated bullfrog small intestinal epithelia. Am J Physiol 219:1023–1026

    PubMed  CAS  Google Scholar 

  • Armstrong WMcD, Bixenman WR, Frey KF, Garcia-Diaz JF, O’Regan MG, Owens JL (1979) Energetics of coupled Na+ and Cl- entry into epithelial cells of bullfrog small intestine. Biochim Biophys Acta 551:207–219

    Article  PubMed  CAS  Google Scholar 

  • Baillien M, Schoffeniels E (1961) Origin of the potential difference in the intestinal epithelium of the turtle. Nature 190:1107–1108

    Article  PubMed  CAS  Google Scholar 

  • Barry RJC, Eggenton J (1972) Membrane potentials of epithelial cells in rat small intestine. J Physiol (Lond) 227:201–216

    CAS  Google Scholar 

  • Barry RJC, Dikstein S, Matthews J, Smyth DH (1961) Electrical potentials in the isolated intestine. J Physiol (Lond) 17P-18P

    Google Scholar 

  • Boulpaep EL (1967) Ion permeability of the peritubular and luminal membrane of the renal tubular cell. In: Krück F (ed) Symposium über Transport und Funktion intracellulärer Elektrolyte. Urban & Schwarzenberg, München, p 98

    Google Scholar 

  • Brown MM, Parsons DS (1962) Observations on the changes in the potassium content of rat jejunal mucosa during absorption. Biochim Biophys Acta 59:249–251

    Article  PubMed  CAS  Google Scholar 

  • Cemerikic D, Giebisch G (1980) Intracellular sodium activity in Necturus kidney proximal tubule. Fed Proc 39:1080

    Google Scholar 

  • Clarkson TW, Cross AC, Toole SR (1961) Dependence on substrate of the electrical potential across the isolated gut. Nature 191:501–502

    Article  PubMed  CAS  Google Scholar 

  • Crane RK, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars. In: Kleinzeller A, Kotyk Z (eds) Membrane transport and metabolism. Academic Press, London New York, p 439

    Google Scholar 

  • Czaky TZ, Esposito G (1969) Osmotic swelling of intestinal epithelial cells during active sugar transport. Am J Physiol 217:753–755

    Google Scholar 

  • Czaky TZ, Thale M (1960) Effect of ionic environment on intestinal sugar transport. J Physiol (Lond) 151:59–65

    Google Scholar 

  • Dinno MA, Huang KC (1977) Effect of glucose and diuretics on intracellular potentials of mouse intestinal mucosa. Proc Soc Exp Biol Med 155:71–78

    PubMed  CAS  Google Scholar 

  • Frömter E (1979) Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules? J Physiol (Lond) 288:1–31

    Google Scholar 

  • Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. 1. Basic phenomena. Pfluegers Arch 393:179–184

    Article  Google Scholar 

  • Frömter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nature 235:9–13

    Article  Google Scholar 

  • Frömter E, Gessner K (1975) Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pfluegers Arch 357:209–224

    Article  Google Scholar 

  • Fujimoto M, Honda M (1980) Direct measurement of intracellular Na and K activities in the renal tubular cells with triple-barreled microelectrodes. Proc Int Congr Physiol Sci 14:119

    Google Scholar 

  • Garay RP, Garrahan PJ (1973) The interaction of sodium and potassium with the sodium pump in red cells. J Physiol (Lond) 231:297–325

    CAS  Google Scholar 

  • Gerencser GA, White JF (1980) Membrane potentials and chloride activities in epithelial cells of Aplysia intestine. Am J Physiol 239:R445-R449

    PubMed  CAS  Google Scholar 

  • Giebisch G (1968) Some electrical properties of single renal tubule cells. J Gen Physiol 51:315s

    Google Scholar 

  • Gilles-Baillien M, Schoffeniels E (1965) Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim 73:355–357

    Article  PubMed  CAS  Google Scholar 

  • Gunter-Smith PJ, Grasset E, Schultz SG (1982) Sodium-coupled amino acid and sugar transport by Necturus small intestine. An equivalent electrical circuit analysis of a rheogenic co-transport system. J Membr Biol 66:25–40

    Article  PubMed  CAS  Google Scholar 

  • Kimura G, Spring KR (1979) Luminal Na+ entry into Necturus proximal tubule cells. Am J Physiol 236:F295-F307

    PubMed  CAS  Google Scholar 

  • Knight AB, Welt LG (1974) Intracellular potassium. A determinant of the sodium-potassium pump rate. J Gen Physiol 63:351–373

    Article  PubMed  CAS  Google Scholar 

  • Koopman W, Schultz SG (1969) The effect of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum. Biochim Biophys Acta 173:338–340

    Article  PubMed  CAS  Google Scholar 

  • Kotera K, Satake N, Honda M, Fujimoto M (1979) The measurement of intracellular sodium activities in the bullfrog by means of double-barreled sodium liquid ion-exchanger microelectrodes. Membr Biochem 2:323–338

    Article  PubMed  CAS  Google Scholar 

  • Lee CO, Armstrong WMcD (1972) Activities of sodium and potassium ions in epithelial cells of small intestine. Science 175:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Nagel W, Garcia-Diaz JF, Armstrong WMcD (1981) Intracellular ionic acitivities in frog skin. J Membr Biol 61:127–134

    Article  PubMed  CAS  Google Scholar 

  • Newey H, Parsons BJ, Smyth DH (1959) The site of action of phlorizin in inhibiting intestinal absorption of glucose. J Physiol (Lond) 148:83–92

    CAS  Google Scholar 

  • O’Doherty J, Stark RJ (1981) Transmembrane and transepithelial movement of calcium during stimulus-secretion coupling. Am J Physiol 241:G150-G158

    PubMed  Google Scholar 

  • O’Doherty J, Garcia-Diaz JF, Armstrong WMcD (1979) Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science 203:1349–1351

    Article  PubMed  Google Scholar 

  • Okada Y, Sato T, Inouye A (1975) Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum. Biochim Biophys Acta 413:104–115

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Iramajiri A, Inouye A (1976) Intracellular ion concentrations of epithelial cells in rat small intestine. Effects of external potassium ions and uphill transports of glucose and glycine. Jpn J Physiol 26:427–440

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Tsuchiya W, Iramajiri A, Inouye A (1977) Electrical properties and active solute transport in rat small intestine. I. Potential profile changes associated with sugar and amino acid transport. J Membr Biol 31:205–219

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Iramajiri A, Tsuchiya W, Inouye A (1978) Contribution of an electrogenic sodium pump to the membrane potential in the intestinal epithelial cell. Jpn J Physiol 28:511–525

    Article  PubMed  CAS  Google Scholar 

  • Post RL, Merritt CR, Konsolving CR, Albright CD (1960) Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem 235:1796–1802

    PubMed  CAS  Google Scholar 

  • Reuss L, Weinmann SA (1979) Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol 49:345–362

    Article  PubMed  CAS  Google Scholar 

  • Riklis E, Quastel JH (1958) Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol 36:347–362

    Article  PubMed  CAS  Google Scholar 

  • Rose RC, Schultz SG (1971) Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol 57:639–663

    Article  PubMed  CAS  Google Scholar 

  • Schachter D, Britten JS (1961) Active transport of non-electrolytes and the potential gradients across intestinal segments in vitro. Fed Proc 20:137

    Google Scholar 

  • Skou JC (1957) Influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  PubMed  CAS  Google Scholar 

  • Steiner RA, Ochme M, Amman D, Simon W (1979) Neutral carrier sodium ion-selective microelectrode for intracellular studies. Anal Chem 51:351–353

    Article  CAS  Google Scholar 

  • White JF (1976) Intracellular potassium activities in Amphiuma small intestine. Am J Physiol 231:1214–1219

    PubMed  CAS  Google Scholar 

  • White JF, Armstrong WMcD (1971) Effect of transported solutes on membrane potentials in bullfrog small intestine. Am J Physiol 221:194–201

    PubMed  CAS  Google Scholar 

  • Wright EM (1966) The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol (Lond) 185:486–500

    CAS  Google Scholar 

  • Zeuthen T, Wright EM (1981) Epithelial potassium transport: Tracer and electrophysiological studies in choroid plexus. J Membr Biol 60:105–128

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

White, J.F., Imon, M.A. (1983). Effect of Galactose on Intracellular Potential and Sodium Activity in Urodele Small Intestine. Evidence for Basolateral Electrogenic Transport. In: Gilles-Baillien, M., Gilles, R. (eds) Intestinal Transport. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69109-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69109-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69111-9

  • Online ISBN: 978-3-642-69109-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics