Skip to main content

Role of Cell Sodium in Regulation of Transepithelial Sodium Transport

  • Conference paper
Book cover Intestinal Transport

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 63 Accesses

Abstract

One of the basic properties of living cells is that they maintain an internal electrolyte composition that is optimal for their metabolism and specific functions. For epithelial cells, whose specific function is active electrolyte transport, the problem arises how to preserve the internal ionic milieu and at the same time generate widely varying transcellular ion fluxes. Since transcellular transport involves movements across the two limiting membranes of epithelial cells, large changes in transcellular transport would be expected to profoundly affect the internal electrolyte composition and volume of the epithelial cells and hence threaten their survival, if the pumps and leaks in the membranes were invariant and independent. However, the internal ionic milieu may be kept within relatively narrow limits despite varying rates of transcellular transport, if the rates of movement across the apical or luminal membrane and the contraluminal or basolateral membrane are somehow coupled. In other words, when the rate of ion movement across one membrane changes, the internal composition will not be markedly altered, if similar changes in ion movement take place at the other membrane. Hence, maintenance of a relatively constant intracellular composition of electrolytes requires a mechanism which rapidly coordinates the pumps and leaks at the apical and basolateral cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biber TUL, Curran PF (1970) Direct measurement of uptake of sodium at the outer surface of the frog skin. J Gen Physiol 56:83–99

    Article  PubMed  CAS  Google Scholar 

  • Civan MM (1978) Intracellular activities of sodium and potassium. Am J Physiol 234:F261-F269

    PubMed  CAS  Google Scholar 

  • Eaton DC (1981) Intracellular sodium activity and sodium transport in rabbit urinary bladder. J Physiol (Lond) 316:527–544

    CAS  Google Scholar 

  • Erlij D, Smith MW (1973) Sodium uptake by frog skin and its modification by inhibitors of trans-epithelial sodium transport. J Physiol (Lond) 228:221–239

    CAS  Google Scholar 

  • Essig A, Leaf A (1963) The role of potassium in active transport of sodium by the toad bladder. J Gen Physiol 46:505–515

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein A, Mauro A (1977) Physical principles and formalism of electrical excitability. In: Geiger S (ed) Handbook of physiology, vol 1/1, sect I: Nervous system. Am Physiol Soc, Bethesda MD, p 161

    Google Scholar 

  • Frazier HS, Dempsey EF, Leaf A (1962) Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol 45:529–543

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Schultz SG (1978) Effect of aldosterone on ion transport by rabbit colon in vitro. JMembr Biol 39:1–26

    Article  CAS  Google Scholar 

  • Frizzell RA, Turnheim K (1978) Ion transport by rabbit colon. II. Unidirectional sodium influx and the effects of amphotericin B and amiloride. J Membr Biol 40:193–211

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27:297–316

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Heintze K, Stewart CP (1980) Mechanism of intestinal chloride secretion. In: Field M, Fordtran JS, Schultz SG (eds) Secretory diarrhea. Clin Physiol Ser Am Physiol Soc, Bethesda, MD, p 11

    Google Scholar 

  • Fuchs W, Hviid Larsen E, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol (Lond) 267:137–166

    CAS  Google Scholar 

  • Garzia-Diaz JF, Armstrong W McD (1980) Intracellular Na activity and Na transport in Necturus gallbladder. Fed Proc 39:1080

    Google Scholar 

  • Goldman D (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27:37–60

    Article  PubMed  CAS  Google Scholar 

  • Graf J, Giebisch G (1979) Intracellular sodium activity and sodium transport in Necturus gallbladder epithelium. J Membr Biol 47:327–355

    Article  PubMed  CAS  Google Scholar 

  • Grasl M, Turnheim K (1982) Adenosine-induced chloride secretion in rabbit colon. Naunyn Schmiedeberg’s Arch Pharmacol Suppl. 319:R58

    Google Scholar 

  • Helman SI, Nagel W, Fisher RS (1979) Ouabain and active transepithelial sodium transport in frog skin. Studies with microelectrodes. J Gen Physiol 74:105–127

    Article  PubMed  CAS  Google Scholar 

  • Higgins FT Jr, Fromter E (1974) Cell membrane potentials in amphibian urinary bladder. Physiologist 17:A247

    Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity aof the giant axon of the squid. J Physiol (Lond) 108:37–77

    CAS  Google Scholar 

  • Hviid Larsen E (1973) Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin. In: Ussing HH, Thron NA (eds) Transport mechanisms in epithelia. Munksgaard, Copenhagen, p 131

    Google Scholar 

  • Jørgensen PL (1980) Sodium and potassium ion pump in kidney tubules. Physiol Rev 60:864–917

    PubMed  Google Scholar 

  • Kimura G, Spring KR (1979) Luminal Na+ entry into Necturus proximal tubule cells. Am J Physiol 236:F295-F301

    PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  PubMed  CAS  Google Scholar 

  • Leblanc G, Morel F (1975) Na and K movements across the membranes of frog skin associated with transient current changes. Pflueger’s Arch 358:159–177

    Article  CAS  Google Scholar 

  • Levitt DG (1980) The mechanism of the sodium pump. Biochim Biophys Acta 604:321–345

    Article  PubMed  CAS  Google Scholar 

  • Lewis SA, Wills NK (1979) Intracellular ion activities and their relationship to membrane properties of tight epithelia. Fed Proc 38:2739–2742

    PubMed  CAS  Google Scholar 

  • Lewis SA, Eaton DC, Diamond JM (1976) The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol 28:41–70

    Article  PubMed  CAS  Google Scholar 

  • Lewis SA, Wills NK, Eaton DC (1978) Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. J Membr Biol 41:117–148

    Article  PubMed  CAS  Google Scholar 

  • Luger A, Turnheim K (1981) Modification of cation permeability of rabbit descending colon by sulfphydryl reagents. J Physiol (Lond) 317:49–66

    CAS  Google Scholar 

  • MacKnight ACD, DiBona DR, Leaf A (1980) Sodium transport across toad urinary bladder: a model tight epithelium. Physiol Rev 60:615–715

    PubMed  CAS  Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53:348–365

    Article  PubMed  CAS  Google Scholar 

  • Nagel W (1980) Rheogenic sodium transport in a tight epithelium, the amphibian skin. J Physiol (Lond) 302:281–295

    CAS  Google Scholar 

  • Narvarte J, Finn AL (1980) Microelectrode studies in toad urinary bladder epithelium. Effects of Na concentration changes in the mucosal solution on equivalent electromotive forces. J Gen Physiol 75:323–344

    Article  PubMed  CAS  Google Scholar 

  • Palmer LG, Edelman IS, Lindemann B (1980) Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism. J Membr Biol 57: 59–71

    Article  PubMed  CAS  Google Scholar 

  • Palmer LG, Li JHY, Lindemann B, Edelman IS (1982) Aldosterone control of the density of the sodium channels in the toad urinary bladder. J Membr Biol 64:91–102

    Article  PubMed  CAS  Google Scholar 

  • Rawlins F, Mateu L, Fragachan F, Whittembury G (1970) Isolated toad skin epithelium: transport characteristics. Pflueger’s Arch 316:64–80

    Article  CAS  Google Scholar 

  • Robinson RA, Stokes RH (1959) Electrolyte solutions. Academic Press, London New York; Butterworth, London

    Google Scholar 

  • Schultz SG (1972) Electrical potential differences and electromotive forces in epithelial tissues. J Gen Physiol 59:794–798

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG (1977) Sodium-coupled solute transport by small intestine: a status report. Am J Physiol 233:E249-E254

    PubMed  CAS  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanism in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241:F579-F590

    PubMed  CAS  Google Scholar 

  • Schultz SG, Frizzell RA, Nellans HN (1977) Active sodium transport and the electrophysiology of rabbit colon. J Membr Biol 33:351–384

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG, Thompson SM, Suzuki Y (1981) Equivalent electrical circuit models and the study of Na transport across epithelia. Nonsteady-state current-voltage relations. Fed Proc 40: 2443–2449

    PubMed  CAS  Google Scholar 

  • Spring KR, Giebisch G (1977) Kinetics of Na+ transport in Necturus proximal tubule. J Gen Physiol 70:307–328

    Article  PubMed  CAS  Google Scholar 

  • Thompson SM, Suzuki Y, Schultz SG (1982) The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism. J Membr Biol 66:41–54

    Article  PubMed  CAS  Google Scholar 

  • Turnheim K, Frizzell RA, Schultz SG (1977) Effects of anions on amiloride-sensitive, active sodium transport across rabbit colon, in vitro. Evidence for “trans-inhibition” of the Na entry mechanism. J Membr Biol 37:63–84

    Article  PubMed  CAS  Google Scholar 

  • Turnheim K, Frizzell RA, Schultz SG (1978) Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J Membr Biol 39:233–256

    Article  PubMed  CAS  Google Scholar 

  • Turnheim K, Luger A, Grasl M (1981) Kinetic analysis of the amiloride-sodium entry site interaction in rabbit colon. Mol Pharmacol 20:543–550

    PubMed  CAS  Google Scholar 

  • Wills NK, Lewis SA (1980) Intracellular Na+ activity as a function of Na+ transporte rate across a tight epithelium. Biophys J 30:181–186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turnheim, K. (1983). Role of Cell Sodium in Regulation of Transepithelial Sodium Transport. In: Gilles-Baillien, M., Gilles, R. (eds) Intestinal Transport. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69109-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69109-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69111-9

  • Online ISBN: 978-3-642-69109-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics