Skip to main content

The Clinical Potential of NMR Imaging

  • Conference paper
Kernspin-Tomographie in der Medizin
  • 23 Accesses

Abstract

The possible images which may be derived from an object form the set of all mappings of the spatial distribution of one or more of its properties. NMR is a resonant RF absorption and re-emission phenomenon exhibited by magnetic nuclei when subjected to a magnetic field. Exploiting what is probably the last available window into the body NMR imaging uses radiowaves with a wavelength of between 20 and 150 metres to create an entirely new class of image where the usual limitation that the wavelength of the incident radiation shall be less than the smallest feature to be resolved is removed. This is done by taking advantage of what Lauterbur (1) called induced local interactions. He pointed out that the application of a field gradient uniquely localises the resonant interaction at a particular frequency. The resulting NMR signal on frequency analysis gives a graph of proton concentration against distance. By making several radially disposed line projections of proton density and combining these by the well known algorithms used in computed tomography cross-sectional images can be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lauterbur, P.C. (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 492, 190–191.

    Article  Google Scholar 

  2. Worthington, B.S. (1983) Clinical prospects for Nuclear Magnetic Resonance. Clinical Radiology (in press).

    Google Scholar 

  3. Young, I.R., Burl, M., Clarke, G.J., Hall, A.S., Passmore, T., Collins, A.G., Smith, D.T., Qrr, J.S., Bydder, G.M., Doyle, F.H., Greenspan, R.H. & Steiner, R.E. (1981) Magnetic resonance properties of hydrogen imaging the posterior fossa. A.J.R., 137, 895–901.

    CAS  Google Scholar 

  4. Crooks, L.E., Mils, C.M., Davis, P.L., Brant-Zawadski, M., Hoenninger, J., Arakawa, M., Watts, J., Kaufmann, L. (1982) Visualization of cerebral and vascular abnormalities by NMR imaging. The effect of imaging parameters on contrast. Radiology, 144, 843.

    PubMed  CAS  Google Scholar 

  5. Holland, G.N., Hawkes, R.C., Moore, W.S. (1980). NMR tomography of the brain. Coronal and sagittal sections. J. Comput. Assist. Tomogr. 4, 429–433.

    Article  CAS  Google Scholar 

  6. Holland, G.N., Moore, W.S., Hawkes, R.C. (1980). Nuclear magnetic magnetic resonance tomography of the brain. J. Cornput. Assist. Tomgr, 4, 1–3.

    Article  CAS  Google Scholar 

  7. Ling, G.N. (1970). The physical state of water in living cells and its physiological significance. Interm. J. Neurosci. 1, 129–152.

    Article  CAS  Google Scholar 

  8. Young, I.R., Bydder, G.M., Hall, A.S., Steiner, R.E., Worthington, B.S., Rswkes, R.C., Holland, G.N., Moore, W.S. (1982). The diagnosis of extra-cerebral collections by NMR imaging. American J. Neuroradiology, (In press).

    Google Scholar 

  9. Doyle, F.H., Pennock, J.M., Orr, J.S., Gore, J.C., Bydder, G.M., Steiner, R.E., Young, I.R., Clow, H., Bailes, D.R., Burle, M., Gilderdale, D.J., & Walters, P.E. (1981) Imaging of the brain by nuclear magnetic resonance. Lancet, ii. 53–57.

    Google Scholar 

  10. Bydder, G.M., Steiner, R.E., Young, I.R., Hall, A.S., Thomas, D.J. Marshall, J., Pallis, C.A., Legg, N.J. (1982) Clinical NMR imaging of the brain: 140 cases. A. J. R. 139, 215.

    Google Scholar 

  11. Young, I.R., Bailes, D.R., Burl, M., Collins, A.G., Smith, D.T., McDonnell, M.J., Grr, J.S., Banks, L.M., Bydder, G.M., Greenspan, R.H. & Steiner, R.E. (1982). Initial clinical evaluation of a whole body- nuclear magnetic resonance tomograph. Journal., of Cornput. Assist. Tomgr, 6, 1–18.

    Google Scholar 

  12. Doyle, F.H., Pennock, J.M., Banks, L.M., McDonnell, M.J., Bydder, J.M., Steiner, R.E., Young, I.R., Clarke, G.J., Pasmore, T. & Gilderdale, D.J. (1982) Nuclear magnetic resonance imaging of the liver - initial experience, A.J.R., 138, 193–200.

    CAS  Google Scholar 

  13. Hawkes, R.C., Holland, G.N., Moore, W.S., Roebuck, E.J., & Worthington, B.S., (1981a). Nuclear magnetic resonance tomography of the normal abdomen. Journal Cornput. Assist. Tomgr. 5, 613–618.

    Article  CAS  Google Scholar 

  14. Hawkes, R.C., Holland, G.N., Moore, W.S., Roebuck, E.J. & Worthington, B.S., (1981b) Nuclear magnetic resonance tomography of the normal heart. Journal Cornput. Assist. Tomogr, 5, 605–612.

    Article  CAS  Google Scholar 

  15. Ordidge, R.J., Mansfield, P. & Coupland, R.E. (1981). Rapid biomedical imaging by NMR. B.J.R. 54, 850–855.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Worthington, B.S., Kean, D., Moore, W.S., Hawkes, R.C., Holland, G.N. (1983). The Clinical Potential of NMR Imaging. In: Wende, S., Thelen, M. (eds) Kernspin-Tomographie in der Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69100-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69100-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12424-5

  • Online ISBN: 978-3-642-69100-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics