Skip to main content

A Fluid-Dynamicist’s and a Physiologist’s Look at Arterial Flow and Arteriosclerosis

  • Conference paper
Fluid Dynamics as a Localizing Factor for Atherosclerosis

Abstract

The regular localization of early, as well as advanced atherosclerotic lesions in the vicinity of arterial branchings as well as the established role of aging and of arterial hypertension in the progression of this disease has long been recognized (e.g. Aschoff [1]). Consequently, fluid-dynamic considerations have for a long time been included in the pathogenetic theories about the initiation, progression and complications of atheromatosis. Descriptive terms such as “turbulence”, “blood stasis”, “dead water zones” were used in the early literature when the role of non-laminar flow near branches of the large arteries was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff L (1912) Thrombose und Sandbankbildung. Beitr path Anat 52: 205–212

    Google Scholar 

  2. Baldauf W, Wurzinger LJ, Kinder J (1978) The role of stagnation point flow in the formation of platelet thrombi on glass surfaces in tubes with various geometry. Path Res Pract 163: 9–33

    Article  PubMed  CAS  Google Scholar 

  3. Betz E, Schlote W (1979) Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 74: 10–20

    Article  PubMed  CAS  Google Scholar 

  4. Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear — observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B 177: 109–159

    Article  PubMed  CAS  Google Scholar 

  5. Caro CG, Pedley TJ, Schroter RC, Seed WA (eds) (1978) The mechanics of the circulation. Oxford University Press, New York Toronto

    Google Scholar 

  6. Doerr W (1963) Perfusionstheorie der Arteriosklerose. Thieme, Stuttgart

    Google Scholar 

  7. Dropmann K (1963) Über die Prädilektionsstellen der Atherosklerose und die hämodynamisehen Verhältnisse in Krümmerstrecken. Z Kreislauff 52: 171–183

    Google Scholar 

  8. Duguid JB (1946) Thrombosis as a factor in the pathogenesis of coronary atherosclerosis. J Path Bact 58: 207

    Article  PubMed  CAS  Google Scholar 

  9. Friedman MH (1974) Shear profiles and diffusion in idealized flow through a y-branch. In: Nerem RM (ed) Fluid dynamic aspects of arterial disease. Ohio State University, pp 1–8

    Google Scholar 

  10. Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 11

    Google Scholar 

  11. Fukushima T, Azuma T (1982) Patterns of pulsatile flow in arterial models with stenosis. Clin Hemorheology 2: 31–41

    Google Scholar 

  12. Goldsmith HL, Yu SSK, Marlow J (1975) Fluid mechanical stress and the platelet. Thromb Diathes Haemorrh 34: 32–41

    CAS  Google Scholar 

  13. Kaibara M, Fukada E (1982) Transient viscoelastic behavior of blood. Clin Hemorheology 2: 7–11

    Google Scholar 

  14. Karino T, Kwong HM, Goldsmith HL (1979) Particle flow behaviour in models of branching vessels. Biorheology 16: 231–248

    PubMed  CAS  Google Scholar 

  15. Kinder J, Kratzer M (1975) Geschwindigkeitsmessung im Inneren komplizierter Strömungen mit einem Lichtschnittverfahren. Biomed Technik 20: 11–12

    Google Scholar 

  16. Liepsch D (1974) Untersuchung der Strömungsverhältnisse in Verzweigungen von Rohren kleiner Durchmesser (Coronararterien) bei Stromtrennung. Dissertation TU München

    Google Scholar 

  17. Liepsch D (1978) Sichtbarmachung der Strömungsvorgänge in Arterienmodellen bei stationärer und pulsierender Strömung. Biomed Techn 23: paper 139

    Google Scholar 

  18. Liepsch D, Moravec St (1979) Qualitative und quantitative Strömungsuntersuchungen an einem menschlichen Nierenarterienmodell. Z Biomed Technik 24: 184–191

    Article  CAS  Google Scholar 

  19. Mol JM, Rijken WJ (1974) Doppler haematotachographic investigation in cerebral circulation disturbances. In: Reneman RS (ed) Cardiovascular applications of ultrasound. Elsevier Publishing Comp., New York, pp 305–313

    Google Scholar 

  20. Müller-Mohnssen H (1957) Über hydrodynamische Ursachen der Arteriosklerose und Thrombenlokalisation in den Coronararterien. Beitr path Anat 117: 283

    Google Scholar 

  21. Müller-Mohnssen H (1958) Die Strömungsverhältnisse in den Coronararterien und ihre Bedeutung für die Manifestierung der Coronarsklerose. In: Probleme der Coronardurchblutung. Springer, Göttingen, S 179–196

    Google Scholar 

  22. Müller-Mohnssen H (1971) Pathogenese der Koronarsklerose und Strömungsmechanik. Münch Med Wschr 113: 604–616

    PubMed  Google Scholar 

  23. Naumann A (1969) Strömungsfragen der Medizin. Arb Gem Forschg Nordrh Westf 203

    Google Scholar 

  24. Naumann A (1975) Strömung in natürlichen und künstlichen Organen und Gefäßen. Klin Wschr 13: 1007–1019

    Article  Google Scholar 

  25. Naumann A (1981) Strömungsfragen der Biotechnik. 17. WEH-Seminar “Naturwissenschaftliche und Medizinische Aspekte der Biomaterialien”, Bad Honnef

    Google Scholar 

  26. Nerem RM (1977) Hot-film measurements of arterial blood flow and observations of flow disturbances. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore London Tokyo, pp 191–215

    Google Scholar 

  27. O’Rourke MF (1982) Vascular impedance in studies of arterial and cardiac function. Physiol Rev 62: 570–623

    PubMed  Google Scholar 

  28. Patel DJ, Vaishnav RN, Atabek HB (1979) Local mechanical properties of the vascular intima and adjacent flow fields. In: Hwang NHC, Gross DR, Patel DJ (eds) Quantitative cardiovascular studies. Clinical and research applications of engineering principles. University Park Press, Baltimore, pp 215–231

    Google Scholar 

  29. Pedley TJ, Schroter RC, Sudlow MF (1971) Flow and pressure drop in systems of repeatedly branching tube. J Fluid Mech 46: part 2, 365–386

    Article  Google Scholar 

  30. Prandtl L (1969) Führer durch die Strömungslehre, 7. Aufl. Vieweg, Braun — schweig

    Google Scholar 

  31. Rodkiewicz CM (1978) Brief discussion: Possible separation and stagnation regions of arterial tree. In: Nerem RM, Cornhill JF (eds) The role of fluid mechanics in atherogenesis. Ohio State University, pp 14–1 – 14–4

    Google Scholar 

  32. Ross R (1981) Smooth muscle cells and atherosclerosis. In: Moore S (ed) Vascular injury and atherosclerosis. Marcel Dekker, New York Basel, pp 53–77

    Google Scholar 

  33. Schmid-Schönbein H, Volger E, Teitel P, Kiesewetter H, Dauer U, Heilmann L (1982) New hemorheological techniques for the routine laboratory. Clin Hemorheology 2: 93–105

    Google Scholar 

  34. Smith KA, Colton CK, Freedman RW (1974) Shear stress measurements at bifurcations. In: Nerem RM (ed) Fluid dynamic aspects of arterial disease. Ohio State University, pp 12–15

    Google Scholar 

  35. Talukder N (1974) Untersuchung über die Strömung in arteriellen Verzweigungen. Dr.-Ing. Dissertation, RWTH Aachen

    Google Scholar 

  36. Talukder N, Nerem RM (1978) Flow characteristics in vascular models. Int Conf Mech in Medicine and Biology, Vol VII, p 281

    Google Scholar 

  37. Thurston GB (1981) Significance and methods of measurement of viscoelastic behavior of blood. In: Gross DR, Hwang NHC (eds) The rheology of blood, blood vessels and associated tissues. Sijthoff & Noordhoff, Alphen aan den Rijn, pp 236–256

    Google Scholar 

  38. Tomm D (1978) Strömung und Geräusch in verengten und verzweigten Gefäßen. Dr.-Ing. Dissertation RWTH Aachen

    Google Scholar 

  39. Zarins ChK, Taylor KE, Lundell MI, Glagov S (1978) Aortic ostial morphology and the localization of atherosclerotic lesions: Preliminary observations. In: Nerem RM, Cornhill JF (eds) The role of fluid mechanics in atherogenesis. Ohio State University pp 5.1–4

    Google Scholar 

  40. Zeller H, Talukder N, Lorenz J (1970) Model studies of pulsating flow in arterial branches and wave propagation in blood vessels. AGARD Conf Proc 65, paper 15

    Google Scholar 

  41. Zeller H, Talukder N, Lorenz J (1970) Versuche zur pulsierenden Strömung durch arterielle Verzweigungen. Abh Aerodyn Inst Aachen 20: 44–48

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naumann, A., Schmid-Schönbein, H. (1983). A Fluid-Dynamicist’s and a Physiologist’s Look at Arterial Flow and Arteriosclerosis. In: Schettler, G., Nerem, R.M., Schmid-Schönbein, H., Mörl, H., Diehm, C. (eds) Fluid Dynamics as a Localizing Factor for Atherosclerosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69085-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69085-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69087-7

  • Online ISBN: 978-3-642-69085-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics