Skip to main content

Influence of Glucagon on Water and Electrolyte Metabolism

  • Chapter
Glucagon II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 2))

Abstract

Since the original reports of Staub et al. (1956, 1957) demonstrating that the injection of glucagon induced a strong diuretic effect in dogs, with an enhancement in renal excretion of sodium, chloride, phosphate, and potassium, several studies have been devoted to the possible role of glucagon in the regulation of water and electrolyte balance. Despite numerous investigations in this field, it still remains uncertain whether under physiologic conditions glucagon really plays a role in the maintenance of salt and water homeostasis. It has nevertheless been convincingly demonstrated that in some ketogenic states associated with insulinopenia, such as starvation or uncontrolled insulin-dependent diabetes, the increase in plasma glucagon levels promotes salt and water depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Parada E, Eisentraut AM, Unger RH (1969) Effects of starvation on plasma pancreatic glucagon in normal man. Diabetes 18: 717–723

    PubMed  CAS  Google Scholar 

  • Anderson RJ, Berl T, McDonald KM, Schrier RW (1976) Prostaglandins: effects on blood pressure, renal blood flow, sodium and water excretion. Kidney Int 10: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Aoki TT, Müller WA, Brennan MF, Cahill GF Jr (1974) Effect of glucagon on aminoacid and nitrogen metabolism in fasting man. Metabolism 23: 805–814

    Article  PubMed  CAS  Google Scholar 

  • Avioli LV (1972) The effects of glucagon on mineral and electrolyte metabolism. In: Lefèbvre PJ, Unger RH (eds) Glucagon, molecular physiology, clinical and therapeutic implications. Pergamon, Oxford, p 181

    Google Scholar 

  • Avioli LV, Birge S J, Kanagawa H, Shieber W (1968) Glucagon induced hypocalcemia in man and dog. J Clin Invest 47:3 a

    Google Scholar 

  • Avioli LV, Birge S J, Scott S, Shieber W (1969) Role of the thyroid gland during glucagon-induced hypocalcemia in the dog. Am J Physiol 216: 939–945

    PubMed  CAS  Google Scholar 

  • Bailly C, Imbert-Teboul M, Chabardès D, Hus Citharel A, Montégut M, Clique A, Morel F (1980) The distal nephron of rat kidney: a target site for glucagon. Proc Natl Acad Sci USA 77: 3422–3424

    Article  PubMed  CAS  Google Scholar 

  • Bailly C, Amiel C (1982) Effect of glucagon on magnesium renal reabsorption in the rat Pflügers Arch 392: 360–365

    Article  PubMed  CAS  Google Scholar 

  • Birge SJ, Avioli LV (1969) Glucagon-induced hypocalcemia in man. J Clin Endocrinol Metab 29: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Burman KD, Smallridge RC, Jones L, Ramos EA, O’Brian JT, Wright FD, Wartofsky L (1980) Glucagon kinetics in fasting: physiological elevations in serum 3,5,3 triiodothyronine increase the metabolic clearance rate of glucagon. J Clin Endocrinol Metab 51: 1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Care AD, Bates RFL, Gitelman H J (1970) A possible role for adenyl cyclase system in calcitonin release. J Endocrinol 48: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Crabbé J (1973) Insulin, glucagon and active sodium transport: from man to amphibian and back. In: Ussing HH, Thorn NA (eds) Transport mechanisms in epithelia. Munksgaard, Copenhagen, p 173

    Google Scholar 

  • Dalle X, Tanghe J, Gryspeerdt W (1959) Influence du glucagon sur l’excrétion rénale des électrolytes. Arch Int Pharmacodyn Ther 120: 505–507

    PubMed  CAS  Google Scholar 

  • Danford RO (1970) The effect of glucagon on renal hemodynamics and renal arteriography. Am J Roentgenol 108: 665–673

    CAS  Google Scholar 

  • David VMA, Horwath IW, Kovacs K (1960) Ãœber die Wirkung des Glucagons auf den Wasser-und Elektrolytstoffwechsel. Endokrinologie 39: 138–149

    PubMed  CAS  Google Scholar 

  • De Fronzo RA, Sherwin RS, Dillingham M, Hendler R, Tamborlane WV, Feiig P (1978) Influence of basal insulin and glucagon secretion on potassium and sodium metabolism. J Clin Invest 61: 472–479

    Article  PubMed  CAS  Google Scholar 

  • De Venanzi F (1955) Comparison between changes in serum inorganic phosphorus induced

    Google Scholar 

  • by glucose and glucagon in diabetics. Proc Soc Exp Biol Med 90:112–115

    Google Scholar 

  • Duckworth WC (1976) Insulin and glucagon degradation by the kidney. I. Subcellular distribution under different assay conditions. Biochim Biophys Acta 437: 518–530

    PubMed  CAS  Google Scholar 

  • Ellis S, Beckett SB (1963) Mechanism of the potassium mobilizing action of epinephrine and glucagon. J Parmacol Exp Ther 142: 318–328

    CAS  Google Scholar 

  • Ellis S, Beckett SB, Boutwell JH (1957) Dibenamide blockade of epinephrine and glucagon hyperkalemias. Proc Soc Exp Biol Med 94: 343–345

    PubMed  CAS  Google Scholar 

  • Elrick H, Huffman ER, Hlad CL Jr, Whipple N, Staub A, Smith AE, Yearwood-Drayton V (1958) Effects of glucagon on renal function in man. J Clin Endocrinol Metab 18: 813–824

    CAS  Google Scholar 

  • Fisher M, Sherwin RS, Hendler R, Felig P (1976) Kinetics of glucagon in man: effects of starvation. Proc Natl Acad Sci USA 73: 1735–1739

    Article  PubMed  CAS  Google Scholar 

  • Influence of Glucagon on Water and Electrolyte Metabolism Forrest JN, Fisher M, Hendler R, Soman V, Sherwin R, Felig P (1976) Contrasting roles of the kidney in the disposal and hormonal action of physiological concentrations of glucagon. Clin Res 24: 400A

    Google Scholar 

  • Gagnon G, Regoli D, Rioux F (1978) A new bioassay for glucagon. Br J Pharmacol 64: 99–108

    PubMed  CAS  Google Scholar 

  • Gagnon G, Regoli D, Rioux F (1980) Studies on the mechanism of action of glucagon in strips of rabbit renal artery. Br J Pharmacol 69: 389–396

    PubMed  CAS  Google Scholar 

  • Gill JR Jr, Casper AGT, Tate J (1971) Renal effects of adenosine 3′,5′cyclic monophosphate and dibutyryl adenosine 3′,5′-cyclic monophosphate. J Clin Invest 50: 1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Glasson P, Vallotton MB (1980) Interrelation between renal prostaglandins and the hormones involved in volume homeostasis by the kidney. Clin Exp Hypertens 2: 761–775

    Article  PubMed  CAS  Google Scholar 

  • Hicks T, Turnberg LA (1974) Influence of glucagon on the human jejunum. Gastroenterology 67: 1114–1118

    PubMed  CAS  Google Scholar 

  • Katz AI, Lindheimer MD (1977) Actions of hormones on the kidney. Ann Rev Physiol 39: 97–134

    Article  CAS  Google Scholar 

  • Kaufman ME, Dinno MA, Huang KC (1980) Effect of glucagon on ion transport in mouse intestine. Am J Physiol 238: G491–G494

    PubMed  CAS  Google Scholar 

  • Kim JK, Frohnert PP, Hui YSF, Barnes LD, Farrow GM, Dousa TP (1977) Enzymes of cyclic 3′,5′-nucleotide metabolism in human renal cortex and renal adenocarcinoma. Kidney Int 12: 172–183

    Article  PubMed  CAS  Google Scholar 

  • Kirschenbaum MA, Zawada ET (1980) The role of prostaglandins in glucagon induced natriuresis. Clin Sci 58: 393–401

    PubMed  CAS  Google Scholar 

  • Kolanowski J (1979) Influence of glucose, insulin, and glucagon on sodium balance in fasting obese subjects. Perspect Biol Med 22: 366–376

    PubMed  CAS  Google Scholar 

  • Kolanowski J (1980) Le rôle du glucagon dans la natriurèse du jeune. Ann Endocrinol (Paris) 41: 237–238

    CAS  Google Scholar 

  • Kolanowski J ( 1981 a) Associations between sodium retention and carbohydrate metabolism. In: Bjôrntorp P, Cairella M, Howard AN (eds) Recent advances in obesity research III. Libbey, London, p 25

    Google Scholar 

  • Kolanowski J (1981 b) Influence of insulin and glucagon on sodium balance in obese subjects during fasting and refeeding. Int J Obes [Suppl 1] 5:105–114

    Google Scholar 

  • Kolanowski J, Crabbé J (1971) Rôle du glucagon dans le rétention du sodium observée en cas d’administration de glucose à l’obèse soumis au jeûne total. J Physiol (Paris) 63: 243A

    Google Scholar 

  • Kolanowski J, De Gasparo M, Desmecht P, Crabbé J (1972) Further evaluation of the role of insulin in sodium retention associated with carbohydrate administration after a fast in the obese. Eur J Clin Invest 2: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Kolanowski J, Desmecht P, Crabbé J (1976) Sodium balance and renal tubular sensitivity to aldosterone during total fast and carbohydrate refeeding in the obese. Eur J Clin Invest 6: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Kolanowski J, Salvador G, Desmecht P, Henquin JC, Crabbé J (1977) Influence of glucagon on natriuresis and glucose–induced sodium retention in the fasting obese subjects. Eur J Clin Invest 7: 167–175

    Article  PubMed  CAS  Google Scholar 

  • Kolanowski J, Bodson A, Desmecht P, Bemelmans S, Stein F, Crabbé J (1978) On the relationship between ketonuria and natriuresis during fasting and upon refeeding in obese patients. Eur J Clin Invest 8: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Lameire N, Vanholder R, Ringoir S, Leusen I (1980) Role of medullary hemodynamics in the natriuresis of drug-induced renal vasodilatation in the rat. Circ Res 47: 839–844

    PubMed  CAS  Google Scholar 

  • Levy M (1975 a) Further observations on the response of the glomerular filtration rate to glucagon: comparison with secretion. Can J Physiol Pharmacol 53:81–85

    Google Scholar 

  • Levy M (1975 b) The effect of glucagon on glomerular filtration rate in dogs during reduction of renal blood flow. Can J Physiol Pharmacol 53:660–668

    Google Scholar 

  • Levy M, Starr NL (1972) The mechanism of glucagon–induced natriuresis in dogs. Kidney Int 2: 76–84

    Article  PubMed  CAS  Google Scholar 

  • Marcus R, Aurbach GD (1969) Bioassay of parathyroid hormone in vitro with a stable 535 preparation of adenyl cyclase from rat kidney. Endocrinology 85: 801–810

    Article  PubMed  CAS  Google Scholar 

  • Marliss EB, Aoki TT, Unger RH, Soeldner JS, Cahill GF Jr (1970) Glucagon levels and metabolic effects in fasting man. J Clin Invest 49: 2256–2270

    Article  PubMed  CAS  Google Scholar 

  • Massara F, Martelli S, Cagliero E, Camanni F, Molinatti GM (1980) Influence of glucagon on plasma levels of potassium in man. Diabetologia 19: 414–417

    Article  PubMed  CAS  Google Scholar 

  • McGarry JD, Wright PH, Foster DW (1975) Hormonal control of ketogenesis. J Clin Invest 55: 1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Melson GL, Chase LR, Aurbach GD (1970) Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules. Endocrinology 86: 511–518

    Article  PubMed  CAS  Google Scholar 

  • Melvin KEW, Tashjian AH, Voelkel EF (1970) Medulary carcinoma of the thyroid: stimulation of calcitonin secretion by glucagon and calcium. In: Taylor S (ed) Calcitonin. Heinemann, London, p 487

    Google Scholar 

  • Merimee TJ, Misbin RI, Pulkkinen AJ (1978) Sex variations in free fatty acids and ketones during fasting: evidence for a role of glucagon. J Clin Endocrinol Metab 46: 414–419

    Article  PubMed  CAS  Google Scholar 

  • Mulvehill JB, Hui YS, Barnes LD, Palumbo PJ, Dousa TP (1976) Glucagon sensitive adenylate cyclase in human renal medulla. J Clin Endocrinol Metab 42: 380–384

    Article  PubMed  CAS  Google Scholar 

  • Narahara HT, Everett NB, Simmons BS, Williams RH (1958) Metabolism of insulin I131 and glucagon I131 in the kidney of the rat. Am J Physiol 192: 227–231

    PubMed  CAS  Google Scholar 

  • O’Brian JT, Saudek C, Spark RF, Arky RA (1974) Glucagon induced refractoriness to exogenous mineralocorticoid. J Clin Endocrinol Metab 38: 1147–1149

    Article  PubMed  Google Scholar 

  • Parving HH, Noer J, Kehlet H, Mogensen CE, Svendsen PA, Heding L (1977) The effect of short-term glucagon infusion on kidney function in normal man. Diabetologia 13: 323–325

    Article  PubMed  CAS  Google Scholar 

  • Parving HH, Sandhal-Christiansen J, Noer I, Tronier B, Mogensen CE (1980) The effect of glucagon infusion on kidney function in short-term-insulin-dependent juvenile diabetics. Diabetologia 19: 350–354

    Article  PubMed  CAS  Google Scholar 

  • Pullman TN, Lavender AR, Aho I (1967) Direct effects of glucagon on renal hemodynamics and excretion of inorganic ions. Metabolism 16: 358–383

    Article  PubMed  CAS  Google Scholar 

  • Saudek CD, Boulter PR, Arky RA (1973) The natriuretic effect of glucagon and its role I starvation. J Clin Endocrinol Metab 36: 761–765

    Article  PubMed  CAS  Google Scholar 

  • Saudek CD, Boulter PR, Knopp RH, Arky RA (1974) Sodium retention accompanying insulin treatment of diabetes mellitus. Diabetes 23: 240–246

    PubMed  CAS  Google Scholar 

  • Sherwin RS, Hendler R, Felig P (1977) Influence of physiologic hyperglucagonaemia on urinary glucose, nitrogen and electrolyte excretion in diabetes. Metabolism 26: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Staub A, Springs V, Elrick H (1956) Effect of glucagon on renal excretion of electrolytes. Fed Proc 15: 361

    Google Scholar 

  • Staub A, Springs V, Stoll F, Elrick H (1957) A renal action of glucagon. Proc Soc Exp Biol Med 94: 57–60

    PubMed  CAS  Google Scholar 

  • Stern PH, Bell NH (1970) Effects of glucagon on serum calcium in the rat and on bone resorption in tissue culture. Endocrinology 87: 111–117

    Article  PubMed  CAS  Google Scholar 

  • Stowe NT, Hook JB (1970) Role of alterations in renal hemodynamics in the natriuretic action of glucagon. Arch Int Pharmacodyn Ther 183: 65–74

    PubMed  CAS  Google Scholar 

  • Tannenbaum J, Splawinski JA, Oates JA, Nies AS (1975) Enhanced renal prostaglandin production in the dog. I. Effect on renal function. Circ Res 36: 197–203

    PubMed  CAS  Google Scholar 

  • Tanzer FS, Kennedy JW III, Talmage RV (1969) A comparison of the effects of thyrocal-citonin and glucagon on plasma calcium and phosphate. Proc Soc Exp Biol Med 133: 500–505

    Google Scholar 

  • Turpin BP, Austin MW, Solomon SS (1978) Urinary and plasma cyclic AMP levels during short term starvation in obese man: response to glucagon stimulation. Horm Metab Res 10: 36–37

    Article  PubMed  CAS  Google Scholar 

  • Ueda J, Nakanishi H, Miyazaki M, Abe Y (1977) Effects of glucagon on the renal hemodynamics of dogs. Eur J Pharmacol 41: 209–212

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Eisentraut AM, Madison LL (1963) The effects of total starvation upon the levels of circulating glucagon and insulin in man. J Clin Invest 42: 1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Uranga J, Fuenzalida R, Rapoport AL, del Castillo E (1979) Effect of glucagon and glomerulopressin on the renal function of the dog. Horm Metab Res 11: 275–279

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolanowski, J. (1983). Influence of Glucagon on Water and Electrolyte Metabolism. In: Lefebvre, P.J. (eds) Glucagon II. Handbook of Experimental Pharmacology, vol 66 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69019-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69019-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69021-1

  • Online ISBN: 978-3-642-69019-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics