Skip to main content

Glucagon and Its Relationship to Other Glucoregulatory Hormones in Exercise and Stress in Normal and Diabetic Subjects

  • Chapter
Glucagon II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 2))

Abstract

Exercise and stress are two situations which have many features in common with respect to hormonal and neural responses to a changed metabolic environment. The interaction of glucagon with other glucoregulatory hormones is important both in stress and exercise. However, since there is a basic difference in fuel fluxes in the two states, we propose to address this topic in two separate sections, one dealing with exercise and the other with stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astrand PO, Rodahl K (1970) Textbook of work physiology. McGraw-Hill, New York

    Google Scholar 

  • Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man. J Clin Invest 39: 1080–1090

    Article  Google Scholar 

  • Allsop JR, Wolfe RR, Burke JF (1978) Glucose kinetics and responsiveness to insulin in the rat injured by burn. Surg Gynecol Obstet 147: 565–573

    PubMed  CAS  Google Scholar 

  • Altszuler N, Steele R, Rathgeb I, DeBodo RC (1967) Glucose metabolism and plasma insulin levels during epinephrine infusion in the dog. Am J Physiol 212: 677–682

    PubMed  CAS  Google Scholar 

  • Altszuler N, Barkai A, Bjarknes L, Gottlieb B, Steele R (1975) Glucose turnover values in the dog obtained with various species of labeled glucose. Am J Physiol 229: 1662–1669

    PubMed  CAS  Google Scholar 

  • Altszuler N, Gottlieb B, Hamshire J (1976) Interaction of somatostatin, glucagon and insulin on hepatic glucose output in the normal dog. Diabetes 25: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RL, Dahms WT, Bray GA, Sperling MA (1981) Adrenergic modulation of glucagon and insulin secretion in obese and lean humans. Horm Metab Res 13: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Berger M, Hagg SA, Ruderman NB (1975) Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem J 146: 231–238

    Google Scholar 

  • Berger M, Berchtold P, Cüppers HJ, Drost H, Kley HK, Müller WA, Wiegelmann W, Zimmermann-Telschow H, Gries FA, Krüskemper HL, Zimmermann H (1977) Metabolie and hormonal effects of muscular exercise in juvenile type diabetes. Diabetologia 13: 355–365

    Article  PubMed  CAS  Google Scholar 

  • Berger M, Halban PA, Müller WA, Offord RE, Vranic M, Renold AE (1978 a) Mobilization of subcutaneously injected tritiated insulin in rats: effects of muscular exercise. Diabetologia 15: 133–140

    Google Scholar 

  • Berger M, Kemmer FW, Goodman MN, Zimmermann-Telschow H, Ruderman NB ( 1978 b) Ketone body metabolism in isolated perfused muscle in various metabolic states. In: Söling HD, Seufert CD (eds) Biochemical and clinical aspects of ketone body metabolism. Thieme, Stuttgart, pp 193–203

    Google Scholar 

  • Bergman RN (1977) Integrated control of hepatic glucose metabolism in the dog. Ann NY Acad Sci 148: 441–468

    Google Scholar 

  • Bergström J, Hultmann E, Saltin B (1973) Muscle glycogen consumption during cross country skiing (the Vasa ski race). Int Z Angew Physiol 31: 71–75

    PubMed  Google Scholar 

  • Björkman O, Felig P, Hagenfeldt L, Wahren J (1981) Influence of hypoglucagonemia on splanchnic glucose output during leg exercise in man. Clin Physiol 1: 43–57

    Article  Google Scholar 

  • Blasquez E, Muñoz-Barragan L, Patton GS, Orci L, Dobbs RE, Unger RH (1976) Gastric A-cell function in insulin deprived depancreatized dogs. Endocrinology 99: 1182–1188

    Article  Google Scholar 

  • Bloom SR, Vaughan NJA, Russell RCG (1974) Vagal control of glucagon secretion in man. Lancet 2: 546–549

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Reichard GA Jr, Hoeldtke RD, Rezvani J, Owen OE (1981) Severe insulin-induced hypoglycemia associated with deficiencies in the release of counterregulatory hormones. N Engl J Med 305: 1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Böttger I, Schiein EM, Faloona GR, Knöchel JP, Unger RH (1972) The effect of exercise on glugacon secretion. J Clin Endocrinol Metab 35: 117–125

    Article  PubMed  Google Scholar 

  • Bürger M, Kramer M (1928) Über die durch Muskelarbeit hervorgerufene Steigerung der Insulinwirkung auf den Blutzuckergehalt beim normalen und gestörten Kohlenhydratstoffwechsel und ihre praktische und theoretische Bedeutung. Klin Wochenschr 7: 745–750

    Article  Google Scholar 

  • Burke JF, Wolfe RR, Mullany CJ, Mathews DE, Bier DM (1979) Glucose requirements following burn injury. Ann Surg 190: 274–285

    Article  PubMed  CAS  Google Scholar 

  • Cahill GR Jr, Herrera MG, Morgan AP, Soeldner JS, Steinke J, Levy PL, Reichard GA Jr, Kipnis DM (1966) Hormone fuel interrelationships during fasting. J Clin Invest 45: 1751–1769

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB, Mclver MA, Bliss SW (1924) Studies on the conditions of activity in endocrine glands. XIII. A sympathetic and adrenal mechanism for mobilizing sugar in hypoglycemia. Am J Physiol 69: 46–66

    Google Scholar 

  • Chan TM, Exton JH (1978) Studies on α-adrenergic activation of hepatic glucose output. J Biol Chem 253: 6393–6400

    PubMed  CAS  Google Scholar 

  • Chaveau MA, Kaufmann M (1887) Experiences pour la détermination du coefficient de l’activité nutritive et respiratoire des muscles en repos et en travail. C R Acad Sei [D] (Paris) 104: 1126–1132

    Google Scholar 

  • Cherrington AD, Exton JH (1976) Studies on the role of cAMP-dependent protein kinase in the action of glucagon and catecholamines on liver glycogen metabolism. Metabolism 25 [Suppl 1]: 1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Cherrington A, Vranic M (1974) Effect of interaction between insulin and glucagon on glucose turnover and FF A concentration in normal and depancreatized dogs. Metabolism 23: 729–744

    Article  PubMed  CAS  Google Scholar 

  • Cherrington A, Vranic M, Fono P, Kovacevic N (1972) Effect of glucagon on glucose turnover and plasma free fatty acids in depancreatized dogs maintained on matched insulin infusion. Can J Physiol Pharmacol 50: 946–954

    Article  PubMed  CAS  Google Scholar 

  • Cherrington AD, Kawamori R, Pek S, Vranic M (1974) Arginine infusion in dogs: model for the roles of insulin and glucagon in regulating glucose turnover and free fatty acid levels. Diabetes 23: 805–815

    PubMed  CAS  Google Scholar 

  • Cherrington AD, Chiasson JL, Liljenquist JE, Jennings AS, Keller K, Lacy WW (1976) The role of glucagon in maintaining basal glucose production. J Clin Invest 58: 1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Cherrington AD, Lacy WW, Chiasson J-L (1978) Then effects of glucagon on glucose production during insulin deficiency in the conscious dog. J Clin Invest 62: 664–677

    Article  PubMed  CAS  Google Scholar 

  • Cherrington AD, Liljenquist JE, Shulman GI, Williams PE, Lacy WW (1979 a) Importance of hypoglycemia-induced glucose production during isolated glucagon deficiency. Am J Physiol 236: E263–E271

    Google Scholar 

  • Cherrington AD, Williams PE, Liljenquist JE, Lacy WW ( 1979 b) The control of glycogenosis and gluconeogenesis in vivo by insulin and glucagon. In: Pierluissi J (ed) Endocrine pancreas in diabetes. Excerpta Medica, Amsterdam, pp 172–191

    Google Scholar 

  • Chiasson J-L, Shikama H, Chu DTW, Exton JH (1981) Inhibitory effect of epinephrine on insulin-stimulated glucose uptake by rat skeletal muscle. J Clin Invest 68: 706–713

    Article  PubMed  CAS  Google Scholar 

  • Chideckel EW, Goodner CJ, Koerker DJ, Johnson DG, Ensinck JW (1977) Role of glucagon in mediating metabolic effects of epinephrine. Am J Physiol 232: 464–470

    Google Scholar 

  • Christensen EH, Hansen O (1939) Arbeitsfähigkeit und Ernährung. Skand Arch Physiol 81: 160–171

    Google Scholar 

  • Christensen NJ (1974) Plasma norepinephrine and epinephrine in untreated diabetics, during fasting and after insulin administration. Diabetes 23: 1–8

    PubMed  CAS  Google Scholar 

  • Christensen NJ, Brandsborg O (1973) The relationship between plasma catecholamine concentration and pulse rate during exercise and standing. Eur J Clin Invest 3: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Christensen NJ, Videbaek J (1974) Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J Clin Invest 54: 278–286

    Article  PubMed  CAS  Google Scholar 

  • Christensen NJ, Alberti KGMM, Brandsborg O (1975 a) Plasma catecholamines and blood substrate concentrations: studies in insulin-induced hypoglycemia and after adrenaline infusions. Eur J Clin Invest 5: 415–423

    Google Scholar 

  • Christensen NJ, Christensen SE, Hansen AP, Lunder K (1975 b) The effect of somatostatin on plasma noradrenaline and plasma adrenaline concentrations during exercise and hypoglvcemia. Metabolism 24: 1267–1272

    Google Scholar 

  • Christensen NJ, Trap-Jensen J, Clausen JP (1975 c) Effect of beta-receptor blockade on heart rate, hepatic blood flow and circulating noradrenaline during exercise in man. Acta Physiol Scand 95: 62A–63A

    Google Scholar 

  • Christensen NJ, Galbo H, Hansen JF, Hesse B, Richter EA, Trap-Jensen J (1979) Catecholamines and exercise. Diabetes 28 [Suppl 1]: 58–62

    PubMed  CAS  Google Scholar 

  • Christensen SE, Hansen AP, Iversen J, Lundbaek K, Orskov H, Seyer-Hansen K (1974) Somatostatin as a tool in studies of basal carbohydrate and lipid metabolism in man: modification of glucagon and insulin. Scand J Clin Lab Invest 34: 321–325

    Article  PubMed  CAS  Google Scholar 

  • Clutter N, Bier D, Shah S, Cryer P (1980) Epinephrine plasma metabolic clearance rate and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Ivest 66: 94–101

    Article  CAS  Google Scholar 

  • Clutter N, Bier D, Shah S, Cryer P (1980) Epinephrine plasma metabolic clearance rate and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Ivest 66: 94–101

    Google Scholar 

  • Coce R, Femenic R, Skrabalo A, Vranic M (1979) The effect of repetitive exercise in daily control of glycemia in insulin-dependent diabetics. In: IVth international symposium on early diabetes. Academic Press, New York Colo wick SP (1973) The hexokinases. In: Boyer PB (ed) The enzymes, 3rd edn, vol 9. Academic, New York, pp 1–48

    Google Scholar 

  • Courtice FC, Douglas CG (1936) The effect of prolonged muscular exercise on the metabolism. Proc R Soc 13: 381–439

    Google Scholar 

  • Couturier E, Rasio E, Conard V (1971) Insulin in plasma and lymph and tissue glucose uptake in the exercised hind limb of the dog. Horm Metab Res 3: 382–386

    Article  PubMed  CAS  Google Scholar 

  • Cowan JS, Hetenyi G Jr (1971) Glucoregulatory responses in normal and diabetic dogs recorded by a new tracer method. Metabolism 20: 360–372

    Article  PubMed  CAS  Google Scholar 

  • Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303: 436–444

    Article  PubMed  CAS  Google Scholar 

  • Dobbs RE, Sakurai H, Faloona GR, Valverde I, Baetens D, Orci L, Unger RH (1975) Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187: 544–547

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Prentki M, Yip C, Müller WA, Jeanrenaud B, Vranic M (1979) Identical biological effects of pancreatic glucagon and purified moiety of canine gastric glucagon. J Clin Invest 63: 525–531

    Article  PubMed  CAS  Google Scholar 

  • Dulin WE, Clarke J J (1961) Studies concerning a possible humoral factor produced by working muscles. Its influence on glucose utilization. Diabetes 10: 289–297

    Google Scholar 

  • Durkot MJ, Wolfe RR (1981) Effects of adrenergic blockade on glucose kinetics in septic and burned guinea pigs. Am J Physiol 241: R222–R227

    PubMed  CAS  Google Scholar 

  • Eigler N, Sacca L, Sherwin RS (1979) Synergistic intractions of physiologic increments of glucagon, epinephrine and Cortisol in the dog. A model for stress-induced hyperglycemia. J Clin Invest 63: 114–123

    Google Scholar 

  • Elwyn DH, Kinney JH, Jeevanandam M, Gump FE, Broell JR (1979) Influence of increasing carbohydrate intake on glucose kinetics in injured patients. Am Surg 190: 117–127

    CAS  Google Scholar 

  • Exton JH, Assimacopoulos-Jeannet FD, Blackmore PF, Cherrington AD, Cahn TM (1978) Mechanisms of catecholamine action on liver carbohydrate metabolism. Adv Nucleotide Res 9: 441–452

    CAS  Google Scholar 

  • Felig P (1973) The glucose–alanine cycle. Metabolism 22: 179–207

    Article  PubMed  CAS  Google Scholar 

  • Feiig P, Wahren J (1975) Fuel homeostasis in exercise. N Engl J Med 293: 1078–1084

    Article  Google Scholar 

  • Felig P, Wahren J (1979) Role of insulin and glucagon in the regulation of hepatic glucose production during exercise. Diabetes 28 [Suppl 1]: 71–75

    PubMed  CAS  Google Scholar 

  • Felig P, Wahren J, Hendler R, Ahlborg G (1972) Plasma glucagon levels in exercising man. N Engl J Med 287: 184–185

    Article  PubMed  CAS  Google Scholar 

  • Felig P, Wahren J, Sherwin R, Hendler R (1976) Insulin, glucagon and somatostatin in normal physiology and diabetes mellitus. Diabetes 25: 1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Feurle GE, Wirth A, Diehm C, Lorenzen M, Schlierf G (1980) Exercise-induced release of pancreatic polypeptide and its inhibition by propanolol: evidence for adrenergic stimulation. Eur J Clin Invest 10: 249–251

    Article  PubMed  CAS  Google Scholar 

  • Frier BM, Corrall RJM, Ratcliffe JG, Ashby JP, McClemont EJW (1981) Autonomic neural control mechanisms of substrate and hormonal responses to acute hypoglycemia in man. Clin Endocrinol (Oxf) 14: 425–433

    Article  CAS  Google Scholar 

  • GalboH, Holst JJ, Christensen NJ (1975) Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J Appl Physiol 38: 70–75

    Google Scholar 

  • Galbo H, Holst J J, Christensen NJ, Hilsted J (1976) Glucagon and plasma catecholamines during beta-receptor blockade in exercising man. J Appl Physiol 40: 855–863

    PubMed  CAS  Google Scholar 

  • Galbo H, Christensen NJ, Holst J J (1977 a) Glucose induced decrease in glucagon and epinephrine responses to exercise in man. J Appl Physiol 42: 525–530

    Google Scholar 

  • Galbo H, Christensen NJ, Holst J J (1977 b) Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta Physiol Scand 101: 428–437

    Google Scholar 

  • Galbo H, Richter EA, Christensen NJ, Holst J J (1978) Sympathetic control of metabolic and hormonal responses to exercise in rats. Acta Physiol Scand 102: 441–449

    Article  PubMed  CAS  Google Scholar 

  • Galbo H, Christensen NJ, Mikines KJ, Sonne B, Hilsted J, Hagen C, Fahrenkrug J (1981 a) The effect of fasting on the hormonal response to graded exercise. J Clin Endocrinol Metab 52: 1106–1112

    Google Scholar 

  • Galbo H, Hedeskov CJ, Capito K, Vinten J (1981 b) The effect of physical training on insulin secretion of rat pancreatic islets. Acta Physiol Scand 111: 75–79

    Google Scholar 

  • Garber AJ, Cryer PE, Santiago JV, Haymond MW, Pagliara AS, Kipnis DM (1976a) The role of adrenergic mechanisms in the substrate and hormonal responses to insulin-induced hypoglycemia. J Clin Invest 58: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Garber AJ, Karl IE, Kipnis DM ( 1976 b) Alanine and glutanine synthesis and release from skeletal muscle. IV. beta adrenergic inhibition of amino acid release. J Biol Chem 251: 1851–1857

    Google Scholar 

  • Gauthier C, Vranic M, Hetenyi G Jr (1980) Importance of glucagon in regulatory rather than emergency responses to hypoglycemia. Am J Physiol 238: E131–E140

    PubMed  CAS  Google Scholar 

  • Gerich JE, Karam JH, Forsham PH (1973) Stimulation of glucagon secretion by epinephrine in man. J Clin Endocrinol Metab 37: 470–481

    Article  Google Scholar 

  • Gerich JE, Lorenzi M, Bier DM, Schneider V, Tsalikian E, Karam JH, Forsham PH (1975) Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N Engl J Med 292: 985–989

    Google Scholar 

  • Gerich JE, Lorenzi M, Tsalikian E, Karam JH (1976) Studies on the mechanism of epinephrine-induced hyperglycemia in man. Diabetes 25: 67–71

    Google Scholar 

  • Gerich J, Davis J, Lorenzi M, Rizza R, Bohannon N, Karam J, Lewis S, Kaplan R, Schultz T, Cryer P (1979) Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol 236: E380–E385

    PubMed  CAS  Google Scholar 

  • Goldstein MS (1961) Humoral nature of the hypoglycemic factor of muscular work. Diabetes 10: 232–234

    PubMed  CAS  Google Scholar 

  • Goldstein MS, Mullick V, Huddlestun B, Levine R (1953) Action of muscular work on transfer of sugar across cell barriers: comparison with the action of insulin. Am J Physiol 173: 212–216

    PubMed  CAS  Google Scholar 

  • Gray DE, Lickley HLA, Vranic M (1980) Physiologic effects of epinephrine on glucose turn-over and plasma free fatty acid concentrations mediated independently of glucagon. Diabetes 29: 600–609

    Article  PubMed  CAS  Google Scholar 

  • Greenwood FC, Landon J, Stamp TCB (1966) The plasma sugar, free fatty acid, Cortisol and growth hormone response to insulin. I. In control subjects. J Clin Invest 45: 429–436

    Google Scholar 

  • Gyntelberg F, Rennie MJ, Hickson RC, Holloszy JO (1977) Effect of training on the response of plasma glucagon to exercise. J Appl Physiol 43: 302–305

    PubMed  CAS  Google Scholar 

  • Hagenfeldt L (1975) Turnover of individual free fatty acids. Fed Proc 34: 2246–2249

    PubMed  CAS  Google Scholar 

  • Hagenfeldt L (1979) Metabolism of free fatty acids and ketone bodies during exercise in normal and diabetic man. Diabetes 28 [Suppl 1]:66–70 Hagenfeldt L, Wahren J (1968) Human forearm muscle metabolism during exercise. III. Uptake, release and oxidation of ß–hydroxybutyrate and observations on the β-hydroxybutyrate/acetoacetate ratio. Scand J Clin Lab Invest 21: 314–320

    Google Scholar 

  • Halban P, Berger M, Gjinovici A, Renold A, Vranic M, Offord R (1978) Pharmacokinetics of subcutaneously injected semi-synthetic tritiated insulin in rats. In: Offord RE, Di Bello C (eds) Semisynthetic peptides and proteins. Academic Press, New York, pp 237–246

    Google Scholar 

  • Halter JB, Pflug AE (1980) Relationship of impaired insulin secretion during surgical stress to anaesthesia and catecholamine release. J Clin Endocrinol Metab 51: 1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Halter JB, Pflug AE, Porte D Jr (1977) Mechanism of plasma catecholamine increases during surgical stress in man. J Clin Endocrinol Metab 45: 936–944

    Article  PubMed  CAS  Google Scholar 

  • Hamaji M, Nakao K, Kiso K (1979) Pancreatic glucagon and insulin response during surgery. Horm Metab Res 11: 488–489

    Article  PubMed  CAS  Google Scholar 

  • Hansen AP (1970) Abnormal serum growth hormone response to exercise in juvenile diabetics. J Clin Invest 49: 1467–1478

    Article  PubMed  CAS  Google Scholar 

  • Hansen AP (1971) Normalization of growth hormone hyperresponse to exercise in juvenile diabetics after “normalization” of blood sugar. J Clin Invest 50: 1806–1811

    Article  PubMed  CAS  Google Scholar 

  • Hartley LH, Mason JW, Hogan RP, Jones LG, Kotchen TA, Mougey EH, Pennington LL, Ricketts PT (1972 a) Multiple hormonal responses to graded exercise in relation to physical training. J Appl Physiol 33: 602–606

    Google Scholar 

  • Hartley LH, Mason JW, Morgan RP, Jones LG, Kotchen TA, Mougey EH, Wherry FE, Pennington LL, Ricketts PT (1972 b) Multiple hormonal response to prolonged exercise in relation to physical training. J Appl Physiol 33: 607–610

    Google Scholar 

  • Harvey WD, Faloona GR, Unger RH (1974) The effect of adrenergic blockade on exercise-induced hyperglycemia. Endocrinology 94: 1254–1258

    Article  PubMed  CAS  Google Scholar 

  • Havivi E, Wertheimer HE (1964) A muscle activity factor increasing sugar uptake by rat diaphragms in vitro. J Physiol (Lond) 172: 342–352

    CAS  Google Scholar 

  • Helmreich E, Cori CF (1957) Studies of tissue permeability. II. Distribution of pentoses between plasma and muscle. J Biol Chem 224: 663–679

    Google Scholar 

  • Hetenyi G Jr (1981) Calculation of the rate of gluconeogenesis in vivo. In: Cobelli C, Bergman RN (eds) Carbohydrate metabolism. Wiley, New York, pp 201–219

    Google Scholar 

  • Hetenyi G Jr, Norwich KH (1974) Validity of the rates of production and utilization of metabolites as determined by tracer methods in intact animals. Fed Proc 33: 1841–1848

    PubMed  CAS  Google Scholar 

  • Hetenyi G Jr, Kovacevic N, Hall SE, Vranic M (1976) Plasma glucagon in pups, decreased by fasting, unaffected by somatostatin or hypoglycemia. Am J Physiol 231: R1377–R1382

    Google Scholar 

  • Hilsted J, Galbo H, Sonne B, Schwartz T, Fahrenkrug J, Schaffalitzky de Muckadell OB, Lauritsen KB, Tronier B (1980) Gastroenteropancreatic hormonal changes during exercise. Am J Physiol 239: G136–G140

    CAS  Google Scholar 

  • Himms-Hagen J (1970) Adrenergic receptors for metabolic responses in adipose tissue. Fed Proc 29: 1388–1401

    PubMed  CAS  Google Scholar 

  • Holloszy JO, Narahara HT (1967) Enhanced permeability to sugar associated with muscle contraction. Studies on the role of Ca+ +. J Gen Physiol 50: 551–552

    Google Scholar 

  • Houssay BA, Lewis JT, Molinelli EA (1924) Rôle de la sécrétion d’adrénaline pendant l’hypoglycémie produite par l’insuline. C R Soc Biol (Paris) 91: 1011–1013

    CAS  Google Scholar 

  • Hsu WH, Hummel SR (1981) Xylaxine-induced hypoglycemia in cattle: a possible involvement of a2–adrenergic receptors regulating insulin release. Endocrinology 109: 825–827

    Article  PubMed  CAS  Google Scholar 

  • Ipp E, Dobbs RE, Unger RH (1978) Morphine and β–endorphin influence the secretion of the endocrine pancreas. Nature 276: 190–191

    Article  PubMed  CAS  Google Scholar 

  • Issekutz B (1977) Studies on hepatic glucose cycles in normal and methylprednisolone treated dogs. Metabolism 26: 157–170

    Article  PubMed  CAS  Google Scholar 

  • Issekutz B Jr (1978) Role of β-adrenergic receptors in mobilization of energy sources in exercising dogs. J Appl Physiol 44: 869–876

    PubMed  Google Scholar 

  • Issekutz B Jr (1980) The role hypoinsulinemia in exercise metabolism. Diabetes 29: 629–635

    PubMed  CAS  Google Scholar 

  • Issekutz B Jr (1981) Effects of glucose infusion on hepatic and muscle glycogenolysis in exercising dogs. Am J Physiol 240: E451–E457

    PubMed  CAS  Google Scholar 

  • Issekutz B Jr, Vranic M (1980) Significance of glucagon in the control of glucose production during exercise in dogs. Am J Physiol 238: E13–E20

    PubMed  CAS  Google Scholar 

  • Issekutz B Jr, Miller HI, Paul P, Rodahl K (1965) Aerobic work capacity and plasma FF A turnover. J Appl Physiol 20: 293–296

    CAS  Google Scholar 

  • Issekutz B Jr, Issekutz AC, Nash D (1970) Mobilization of energy sources in exercising dogs. J Appl Physiol 29: 691–697

    PubMed  CAS  Google Scholar 

  • Issekutz B Jr, Shaw WA, Issekutz AC (1976) Lactate metabolism in resting and exercising dogs. J Appl Physiol 40: 312–319

    PubMed  CAS  Google Scholar 

  • Iversen J (1973) Adrenergic receptors and the secretion of glucagon and insulin from the isolated perfused canine pancreas. J Clin Invest 52: 2102–2116

    Article  PubMed  CAS  Google Scholar 

  • Kalant N, Leibovici T, Rohan I, McNeill K (1978) Effect of exercise on glucose and insulin utilization in the forearm. Metabolism 27: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Katz J, Dunn A (1967) Glucose 2–T as a tracer for glucose metabolism. Biochemistry 6: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Kawamori R, Vranic M (1977) Mechanism of exercise induced hypoglycemia in depancreatized dogs maintained on long-acting insulin. J Clin Invest 59: 331–337

    Article  PubMed  CAS  Google Scholar 

  • Kemmer FW, Vranic M (1981) The role of glucagon and its relationship to other glucoregulatory hormones in exercise. In: Unger RH, Orci L (eds) Glucagon physiology, pathophysiology, and morphology of the pancreatic A-cell. Elsevier, New York, pp 297–331

    Google Scholar 

  • Kemmer FW, Berchtold P, Berger M, Cuppers HJ, Starke A, Gries FA, Zimmermann H (1979) A mechanism of the exercise-induced fall of blood glucose in insulin-treated diabetics. Diabetes [Suppl 2]: 360

    Google Scholar 

  • Kemmer FW, Lickley HLA, Gray DE, Perez G, Vranic M (1982) The state of metabolic control determines the role of epinephrine-glucagon interactions in glucoregulation in diabetes. Am J Physiol 242: E428–E436

    PubMed  CAS  Google Scholar 

  • Kjellmer J (1965) Studies on exercise hyperaemia. Acta Physiol Scand 64 [Suppl 244]: 1–27

    Google Scholar 

  • Koerker DJ, Ruch W, Chideckel G, Palmer J, Goodner CJ, Ensinck J, Gale CC (1974) Somatostatin: hypothalamic inhibition of the endocrine pancreas. Science 184: 482–483

    Article  PubMed  CAS  Google Scholar 

  • Koivisto V, Felig P (1978) Effects of leg exercise on insulin absorption in diabetic patients. N Engl J Med 298: 77–83

    Article  Google Scholar 

  • Koivisto V, Soman V, Conard P, Hendler R, Nadel E, Felig P (1979) Insulin binding to monocytes in trained athletes: changes in the resting state and after exercise. J Clin Invest 64: 1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RD (1926) The effect of exercise on insulin action in diabetes. Br Med J 1: 648–650

    Article  PubMed  CAS  Google Scholar 

  • Lefèbvre PJ, Luyckx AS (1977) Factors controlling gastric-glucagon release. J Clin Invest 59: 716–722

    Article  PubMed  Google Scholar 

  • Lefèbvre PJ, Luyckx AS (1978) Glucose and insulin in the regulation of glucagon release from isolated perfused dog stomach. Endocrinology 103: 1579–1582

    Article  PubMed  Google Scholar 

  • Lefèbvre PJ, Luyckx AS, Federspil G (1972) Muscular exercise and pancreatic function in rats. Isr J Med Sci 8: 390–398

    PubMed  Google Scholar 

  • Lickley HLA, Ross GG, Vranic M (1979) Effects of selective insulin or glucagon deficiency on glucose turnover. Am J Physiol 236: E255–E262

    PubMed  CAS  Google Scholar 

  • Lickley HLA, Doi K, Vranic M (1981 a) Glucagon suppression improves glycemia in partial but not in total insulin deficiency (Abstr 308). Diabetologia 21: 297

    Google Scholar 

  • Lickley HLA, Kemmer FW, Gray DE, Kovacevic N, Hatton TW, Perez G, Vranic M (1981b) Chromatographic pattern of extrapancreatic glucagon and glucagon-like immunoreactivity before and during stimulation by epinephrine, and participation of glucagon in epinephrine-induced hepatic glucose overproduction. Surgery 90: 186–194

    PubMed  CAS  Google Scholar 

  • Liddell MJ, MacLean LD, Shizgal HM (1979) The role of stress hormones in the catabolic metabolism of shock. Surg Gynecol Obstet 149: 822–830

    PubMed  CAS  Google Scholar 

  • Lindsey CA, Santeusanio F, Braaten J, Faloona GR, Unger RH (1974) Pancreatic alpha-cell function in trauma. JAMA 227: 757–761

    Article  PubMed  CAS  Google Scholar 

  • Lindsey CA, Faloona GR, Unger RH (1975) Plasma glucagon levels during rapid exsanguination with and without adrenergic blockade. Diabetes 24: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Long CL, Schiller WR, Geiger JW, Blakemore WS (1978) Gluconeogenic response during glucose infusion in patients following skeletal trauma or during sepsis. J Parent Ent Nutr 2: 619–626

    Article  CAS  Google Scholar 

  • Luyckx AS, Dresse A, Cession–Fossion A, Lefebvre PJ (1975) Catecholamines and exercise-induced glucagon and fatty acid mobilization in the rat. Am J Physiol 229: 376–383

    CAS  Google Scholar 

  • Luyckx AS, Pirnay F, Lefebvre PJ (1978) Effect of glucose on plasma glucagon and free fatty acids during prolonged exercise. Eur J Appl Physiol 39: 53–61

    Article  CAS  Google Scholar 

  • Martins MJ, Horwitz DL, Nattrass M, Granger JF, Rochman H, Ash S (1981) Effects of mild hyperinsulinemia on the metabolic response to exercise. Metabolism 30: 688–694

    Article  Google Scholar 

  • McGarry JD, Foster DW (1977) Hormonal control of ketogenesis. Arch Intern Med 137: 485–501

    Article  Google Scholar 

  • Minuk HL, Hanna AK, Marliss EB, Vranic M, Zinman B (1980) The metabolic response to moderate exercise in obese man during prolonged fasting. Am J Physiol 238: E322–E329

    PubMed  CAS  Google Scholar 

  • Minuk HL, Vranic M, Marliss EB, Hanna AK, Albisser AM, Zinman B (1981) The glucoregulatory and metabolic response to exercise in obese non-insulin dependent diabetes. Am J Physiol 240: E458–E464

    PubMed  CAS  Google Scholar 

  • Mondon CE, Dolkas CB, Reaven GM (1980) Site of enhanced insulin sensitivity in exercise trained rats at rest. Am J Physiol 239: E169–E177

    PubMed  CAS  Google Scholar 

  • Morita S, Doi K, Yip C, Vranic M (1976) Measurement and partial characterization of immunoreactive glucagon in gastrointestinal tissues of the dog. Diabetes 25: 1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Müller WA, Aoki TT, Egdahl RH, Cahill GF Jr (1977) Effects of exogenous glucagon and epinephrine in physiological amounts on the blood levels of free fatty acids and glycerol in dogs. Diabetologia 13: 55–58

    Article  PubMed  Google Scholar 

  • Müller WA, Girardier L, Seydoux J, Berger M, Renold AE, Vranic M (1978) Extrapancreatic glucagon and glucagon-like immunoreactivity in depancreatized dogs: a quantitative assessment of secretion rates and anatomical delineation of sources. J Clin Invest 62: 124–132

    Article  PubMed  Google Scholar 

  • Murray FT, Zinman B, McClean PA, Denoga A, Albisser AM, Leibel BS, Nakooda AF, Stokes EF, Marliss EB (1977) The metabolic response to moderate exercise in diabetic man receiving intravenous and subcutaneous insulin. J Clin Endocrinol Metab 44: 708–720

    Article  PubMed  CAS  Google Scholar 

  • Nakhooda AF, Sole MJ, Marliss EB (1981) Adrenergic regulation of glucagon and insulin secretion during immobilization stress in normal and spontaneously diabetic BB rats. Am J Physiol 240: E373–E378

    PubMed  CAS  Google Scholar 

  • Newsholme EA, Randle PJ (1964) Regulation of glucose uptake by the muscle. Biochem J 93: 641–651

    PubMed  CAS  Google Scholar 

  • Ohneda A, Kobayashi T, Nihei J (1980) Response of extrapancreatic glucagon to glycemic changes. Endocrinol Jpn 1: 121–126

    Article  Google Scholar 

  • Pedersen O, Beck–Nielsen H, Heding L (1980) Increased insulin receptors after exercise in patients with insulin-dependent diabetes mellitus. N Engl J Med 302: 886–892

    CAS  Google Scholar 

  • Perez G, Ungaro B, Covelli A, Morrone G, Lombardi G, Scopacasa F, Rossi R (1980) Altered glucoregulatory response to physiological infusions of epinephrine and glucagon in hyperthyroidism. J Clin Endocrinol Metab 51: 972–977

    Article  PubMed  CAS  Google Scholar 

  • Perez G, Kemmer FW, Lickley HLA, Vranic M (1981) The importance of glucagon in mediating epinephrine–induced hyperglycemia in alloxan-diabetic dogs. Am J Physiol 241: E328–E335

    PubMed  CAS  Google Scholar 

  • Porte D, Graber AL, Kuzuya T, Williams RH (1966) The effects of epinephrine on IRI levels in man. J Clin Invest 45: 228–236

    Article  PubMed  CAS  Google Scholar 

  • Radziuk J, Norwich K, Vranic M (1974) Measurement and validation of nonsteady turnover rates with application to the insulin and glucose system. Fed Proc 33: 1855–1864

    PubMed  CAS  Google Scholar 

  • Radziuk J, Norwich KH, Vranic M (1978) Experimental validation of measurements of glucose turnover in nonsteady state. Am J Physiol 234: E84–E93

    PubMed  CAS  Google Scholar 

  • Randle PJ, Smith GH (1958) Regulation of glucose uptake by muscle. II. The effect of insulin anaerobiosis and cell poisons on the penetration of isolated rat diaphragm by sugars. Biochem J 70: 502–508

    Google Scholar 

  • R-Candela R, R-Candela JL (1962) Possible factor produced during muscular contractions which influences the passage of glucose. Proc Soc Exp Biol Med 110: 803–804

    Google Scholar 

  • Reaven EP, Reaven GM (1981) Structure and function changes in the endocrine pancre;; of aging rats with reference to the modulating effects of exercise and caloric restriction J Clin Invest 68: 75–84

    CAS  Google Scholar 

  • Refsum HE, Stromme SB (1974) Urea and creatinine production and excretion in urine during and after prolonged heavy exercise. Scand J Clin Lab Invest 33: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Rennie MJ, Park DM, Sulaiman WR (1976) Uptake and release of hormones and metabolites by tissues of exercising leg in man. Am J Physiol 231: 967–973

    PubMed  CAS  Google Scholar 

  • Richter EA, Galbo H, Sonne B, Hoist J J, Christensen NJ (1980) Adrenal medullary control of muscular and hepatic glycogenolysis and of pancreatic hormonal secretion in exercising rats. Acta Physiol Scand 108: 235–242

    Article  PubMed  CAS  Google Scholar 

  • Richter EA, Galbo H, Christensen NJ (1981 a) Control of exercise-induced muscular glycogenolysis by adrenal medullary hormones in rats. J Appl Physiol 50: 21–26

    Google Scholar 

  • Richter EA, Galbo H, Hoist JJ, Sonne B (1981 b) Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats. Horm Metab Res 13: 323–326

    Google Scholar 

  • Richter EA, Sonne B, Christensen NJ, Galbo H (1981 c) Role of epinephrine for muscular glycogenolysis and pancreatic hormonal secretion in running rats. Am J Physiol 240: E526–E532

    Google Scholar 

  • Rizza R, Verdonk C, Miles J, Service FJ, Gerich J (1979 a) Effect of intermittent endogenous hyperglucagonemia on glucose homeostasis in normal and diabetic man. J Clin Invest 63: 1119–1123

    Google Scholar 

  • Rizza RA, Cryer PE, Gerich JE ( 1979 b) Role of glucagon, catecholamines and growth hormone in human glucose counterregulation. Effects of somatostatin and combined α– and β–adrenergic blockade in plasma glucose recovery and glucose flux rate after insulin-induced hypoglycemia. J Clin Invest 64: 62–70

    Google Scholar 

  • Rizza R, Haymond M, Cryer P, Gerich J (1979 c) Differential effects of epinephrine on glucose production and disposal in man. Am J Physiol 237: E356–E362

    Google Scholar 

  • Riza RA, Cryer PE, Haymond MW, Gerich JE (1980 a) Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J Clin Invest 65: 682–689

    Google Scholar 

  • Rizza RA, Haymond MW, Miles JM, Verdonk CA, Cryer PE, Gerich JE (1980 b) Effect of α-adrenergic stimulation and its blockade on glucose turnover in man. Am J Physiol 238: E467–E472

    Google Scholar 

  • Rizza RA, Mandarino LJ, Gerich JE (1981) Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 240: E630–E639

    PubMed  CAS  Google Scholar 

  • Robertson RP, Porte D Jr (1973) Adrenergic modulation of basal insulin secretion in man. Diabetes 22: 1–8

    PubMed  CAS  Google Scholar 

  • Rocha DM, Santeusanio F, Faloona GR, Unger RH (1973) Abnormal pancreatic alpha-cell

    Google Scholar 

  • function in bacterial infection. N Engl J Med 288:700–703

    Google Scholar 

  • Ross G, Lickley HLA, Vranic M (1978) Extrapancreatic glucagon in control of glucose turnover in depancreatized dogs. Am J Physiol 234: E213–E219

    PubMed  CAS  Google Scholar 

  • Roth J, Glick GM, Yalow RS, Berson SA (1963) Hypoglycemia: a powerful stimulus to secretion of growth hormone. Science 140: 987–991

    Article  PubMed  CAS  Google Scholar 

  • Sacca L, Perez G, Carteni G, Rengo G (1977) Evaluation of the role of the sympathetic nervous system in the glucoregulatory response to insulin-induced hypoglycemia in the rat. Endocrinology 101: 1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Sacca L, Sherwin R, Felig P (1978) Effects of sequential infusions of glucagon and epinephrine on glucose turnover in the dog. Am J Physiol 235: E287–E290

    PubMed  CAS  Google Scholar 

  • Sacca L, Sherwin R, Felig P (1979 a) Influence of somatostatin on glucagon- and epinephrine-stimulated hepatic glucose output in the dog. Am J Physiol 236:E113–E117

    Google Scholar 

  • Sacca L, Sherwin R, Hendler R, Felig P (1979 b) Influence of continuous physiologic hyperinsulinemia on glucose kinetics and counter-regulatory hormones in normal and diabetic humans. J Clin Invest 63: 849–857

    Google Scholar 

  • Samols E, Weir GC (1979) Adrenergic modulation of pancreatic A, B, and D cells. J Clin Invest 63: 230–238

    Google Scholar 

  • Schade DS, Eaton RP (1979) The regulation of plasma ketone body concentration by counter-regulatory hormones in man. III. Effects of norepinephrine in normal man. Diabetes 28: 5–10

    Google Scholar 

  • Schade DS, Eaton RP (1980) The temporal relationship between endogenously secreted stress hormones and metabolic decompensation in diabetic man. J Clin Endocrinol Metab 50: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Schultz TA, Leweis SB, Westbie DK, Wallin JD, Gerich JE (1977) Glucose delivery: a modulation of glucose uptake in contracting skeletal muscle. Am J Physiol 233:E514– E518

    Google Scholar 

  • Shamoon H, Jacob R, Sherwin RS (1979) Epinephrine–induced hypoaminoacidemia in man: a β–adrenergic effect. Clin Res 27: 595A

    Google Scholar 

  • Shamoon H, Hendler R, Sherwin R (1980) Altered responsiveness to Cortisol, epinephrine and glucagon in insulin-infused juvenile onset diabetics: a mechanism for diabetic instability. Diabetes 29: 284–291

    Article  PubMed  CAS  Google Scholar 

  • Shamoon H, Hendler R, Sherwin RS (1981) Synergistic interaction among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans. J Clin Endocrinol Metab 52: 1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Shaw WAS, Issekutz TB, Issekutz B Jr (1976) Gluconeogenesis from glycerol at rest and during exercise in normal diabetic and methylprednisolone treated dogs. Metabolism 25: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Sherwin RS, Fisher M, Hendler R, Felig P (1976) Hyperglucagonemia and blood glucose regulation in normal, obese and diabetic subjects. N Engl J Med 294: 455–461

    Article  PubMed  CAS  Google Scholar 

  • Sherwin RS, Tamborlane W, Hendler R, Sacca L, de Fronzo RA, Felig P (1977) Influence of glucagon replacement on the hyperglycemic and hyperketonemic response to prolonged somatostatin infusion in normal man. J Clin Endocrinol Metab 45: 1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Silverberg AB, Shah SD, Haymond MW, Cryer PE (1978) Norepinephrine: hormone and neurotransmitter in man. Am J Physiol 234: E252–E256

    PubMed  CAS  Google Scholar 

  • Sirek A, Vranic M, Sirek OV, Vigas M, Policova Z (1979) The effect of growth hormone on acute glucagon and insulin release. Am J Physiol 237: E107–E112

    PubMed  CAS  Google Scholar 

  • Sokal JE, Sarcione EJ, Henderson AM (1964) Relative potency of glucagon and epinephrine as hepatic glycogenolytic agents: studies with the isolated perfused rat liver. Endocrinology 74: 930–938

    Article  PubMed  CAS  Google Scholar 

  • Srikant CB, McKorkle K, Unger RH (1977) Properties of immunoreactive glucagon fractions of canine stomach and pancreas. J Biol Chem 252: 1847–1851

    PubMed  CAS  Google Scholar 

  • Standi E, Janka HV, Dexel T, Kolb HJ (1976) Muscle metabolism during rest and exercise: influence on the oxygen transport system of blood in normal and diabetic subjects. Diabetes 25 [Suppl 2]: 914–919

    Google Scholar 

  • Steele R, Wall JS, deBodo RC, Altszuler N (1956) Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol 187: 15–24

    PubMed  CAS  Google Scholar 

  • Struwe FE (1977) Stoffwechselführung diabetischer Kinder unter körperlicher Belastung. In: Jahnke K, Mehnert H, Reis HD (eds) Muskelstoffwechsel, körperliche Leistungsfähigkeit und Diabetes mellitus. Schattauer, Stuttgart, pp 313–316

    Google Scholar 

  • Sutherland EW, de Duve C (1948) Origin and distribution of hyperglycemic glycogenolytic factor of the pancreas. J Biol Chem 175: 663–674

    CAS  Google Scholar 

  • Unger RH (1978) Role of glucagon in the pathogenesis of diabetes: the status of the controversy. Metabolism 27: 1691–1709

    Article  PubMed  CAS  Google Scholar 

  • Unger RH (1981) The milieu interieur and the islets of Langerhans. Diabetologia 20: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Orci L (1975) Hypothesis: the essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 1: 14–16

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Aguilar-Parada E, Müller W, Eisentraut A (1970) Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 49: 837–848

    Article  PubMed  CAS  Google Scholar 

  • Vidnes J, Oyasaeter S (1977) Glucagon deficiency causing severe neonatal hypoglycemia in a patient with normal insulin secretion. Pediatr Res 11: 943–949

    Article  PubMed  CAS  Google Scholar 

  • Vranic M, Berger M (1979) Exercise and diabetes mellitus. Diabetes 28: 147–167

    PubMed  CAS  Google Scholar 

  • Vranic M, Issekutz B Jr (1980) The important roles of glucagon and insulin in the regulation of glucose fluxes during exercise in health and diabetes. In: Andreani D, Lefebvre PJ, Marks V (eds) Current views on hypoglycemia and glucagon. Academic Press, New York, pp 57–70

    Google Scholar 

  • Vranic M, Wrenshall GA (1968) Matched rates of insulin infusion and secretion and con-current tracer determined rates of glucose appearance in fasting dogs. Can J Physiol Pharmacol 46: 383–390

    Article  PubMed  CAS  Google Scholar 

  • Vranic M, Wrenshall GA (1969) Exercise, insulin and glucose turnover in dogs. Endocrinology 85: 165–171

    Article  PubMed  CAS  Google Scholar 

  • Vranic M, Fono P, Kovacevic N, Lin BJ (1971) Glucose kinetics and fatty acids in dogs on matched insulin infusion after a glucose load. Metabolism 20: 954–967

    Article  PubMed  CAS  Google Scholar 

  • Vranic M, Pek S, Kawamori B (1974 a) Increased “glucagon immunoreactivity” in plasma of totally depancreatized dogs. Diabetes 23: 905–912

    Google Scholar 

  • Vranic M, Kawamori R, Wrenshall GA (1974 b) Mechanism of exercise-induced hypoglycemia in depancreatized insulin-treated dogs (Abstr). Diabetes 23 [Suppl 1]:353

    Google Scholar 

  • Vranic M, Kawamori R, Wrenshall GA (1975) The role of insulin and glucagon in regulating glucose turnover in dogs during exercise. Med Sci Sports 7: 27–33

    Article  PubMed  CAS  Google Scholar 

  • Vranic M, Kawamori R, Pek S, Kovacevic N, Wrenshall GA (1976 a) The essentiality of insulin and the role of glucagon in regulating glucose turnover during strenuous exercise. J Clin Invest 57: 245–255

    Google Scholar 

  • Vranic M, Ross GG, Doi K, Lickley HLA (1976 b) The role of glucagon-insulin interactions in control of glucose turnover and its significance in diabetes. Metabolism 25 [Suppl 1]: 1375–1380

    Google Scholar 

  • Vranic M, Lickley HLA, Kemmer FW, Perez G, Hetenyi G Jr, Hatton TW, Kovacevic N (1981) Interaction between insulin and the counterregulatory hormones in the development of diabetes. In: Martin J, Ehrlich R (eds) Etiology and pathogenesis of diabetes. Raven, New York, pp 153–178

    Google Scholar 

  • Wahren J, Felig P, Ahlbor G, Forfeldt L (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50: 2715–2725

    Article  PubMed  CAS  Google Scholar 

  • Walaas O, Walaas E (1950) Effect of epinephrine on rat diaphragm. J Biol Chem 187: 769–775

    PubMed  CAS  Google Scholar 

  • Wass JAH, Penman E, Medbaks S, Dawson AM, Tsiolakis D, Marks V, Besser GM, Rees LH (1980) Immunreactive somatostatin changes during insulin-induced hypoglycemia and operative stress in man. Clin Endocrinol (Oxf) 12: 269–275

    Article  CAS  Google Scholar 

  • Wilmore DW, Long JM, Mason AD (1974 a) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 180: 653–669

    Google Scholar 

  • Wilmore DW, Lindsey CA, Maylan JA, Faloona GR, Pruitt BA, Unger RH (1974 b) Hyperglucagonemia after burns. Lancet 1: 73–75

    Google Scholar 

  • Wilson DW, Long WL, Thompson HC, Thurlow S (1925) Changes in the composition of the urine after muscular exercise. J Biol Chem 65: 755–771

    CAS  Google Scholar 

  • Wirth A, Diehm C, Mayer H, Mori H, Vogel I, Bjorntorp P, Schlierf G (1981) Plasma C-peptide and insulin in trained and untrained subjects. J Appl Physiol 50: 71–77

    PubMed  Google Scholar 

  • Wolfe RR, Allsop JR, Burke JF (1977) Experimental sepsis and glucose metabolism: time course of response. Surg Forum 28: 42–43

    PubMed  CAS  Google Scholar 

  • Wolfe RR, Durkot MJ, Allsop JR, Burke JF (1979) Glucose metabolism in severely burned patients. Metabolism 28: 1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Woodson LC, Bee DE, Potter DE (1980) Catecholamine–induced hyperglycemia in dogs: independent from alterations in pancreatic hormone release. Horm Metab Res 12: 434–439

    Article  PubMed  CAS  Google Scholar 

  • Zinman B, Murray FT, Vranic M, Albisser AM, Leibel BS, McClean PA, Marliss EB (1977) Glucoregulation during moderate exercise in insulin treated diabetes. J Clin Endocrinol Metab 45: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Zinman B, Murray FT, Vranic M, Albisser M, Leibel BS, McClean PA, Marliss EB (1979) Glucoregulation during moderate exercise. Diabetes 28 [Suppl 1]: 82–88

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lickley, H.L.A., Kemmer, F.W., Wasserman, D.H., Vranic, M. (1983). Glucagon and Its Relationship to Other Glucoregulatory Hormones in Exercise and Stress in Normal and Diabetic Subjects. In: Lefebvre, P.J. (eds) Glucagon II. Handbook of Experimental Pharmacology, vol 66 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69019-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69019-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69021-1

  • Online ISBN: 978-3-642-69019-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics