Skip to main content

Kumulative Anthracyclin-Kardiotoxizität. Möglichkeiten für eine kardioselektive Protektion durch Begleittherapie mit Isozitrat und Niacin

  • Conference paper
Aktuelle Probleme der Hämatologie und internistischen Onkologie
  • 24 Accesses

Zusammenfassung

Die Anthracycline Adriamycin und Daunomycin gehören zu den wirksamsten Substanzen bei der zytostatischen Chemotherapie maligner Tumoren und Systemerkrankungen [6]. Ihre klinische Anwendbarkeit ist über eine Gesamtdosis von 550 mg/m2 hinaus durch ihre kumulative Kardiotoxizität eingeschränkt [32].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Babson JR, Abell NS, Reed DJ (1981) Protective role of the glutathione redox cycle against adriamycin-mediated toxicity in isolated hepatocytes. Biochem Pharmacol 30:2299–2304

    Article  PubMed  CAS  Google Scholar 

  2. Bachur N, Gordon S, Gee M (1977) Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol 13:901–910

    PubMed  CAS  Google Scholar 

  3. Bachur NR, Gee MV, Friedman RD (1982) Nuclear catalyzed antibiotic free radical formation. Cancer Res 42:1078–1081

    PubMed  CAS  Google Scholar 

  4. Berlin V, Haseltine WA (1981) Reduction of adriamycin to a semiquinone-free radical by NADPG cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. J Biol Chem 256:4747–4756

    PubMed  CAS  Google Scholar 

  5. Billingham ME, Mason JW, Bristow MR, Daniels JR (1978) Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 62:865–872

    PubMed  CAS  Google Scholar 

  6. Blum RH, Carter SK (1974) Adriamycin: A new anticancer drug with significant clinical activity. Ann Intern Med 80:249–259

    PubMed  CAS  Google Scholar 

  7. Breed JGS, Zimmermann ANE, Dormans JAMA, Pinedo HM (1980) Failure of the antioxidant vitamin E to protect against adriamycin-induced cardiotoxicity in the rabbit. Cancer Res 40:2033–2038

    PubMed  CAS  Google Scholar 

  8. Bristow MR et al. (1981) Anthracycline-associated cardiac and renal damage in rabbits. Evidence for mediation by vasoactive substances. Lab Invest 45:157–168

    PubMed  CAS  Google Scholar 

  9. Brown OR, Heitkamp M, Song C-S (1981) Niacin reduces paraquat toxicity in rats. Science 212:1510–1512

    Article  PubMed  CAS  Google Scholar 

  10. Bühner R, Biedert S, Miura D (1980) Experimentelle Untersuchungen zur Klärung der Pathogenese der durch Adriamycin induzierten Kardiomyopathie. Arzneimittel-Forsch 30:1065–1070

    Google Scholar 

  11. Chlebowski RT, Paroly WS, Pugh RP, Hueser J, Jacobs EM, Pajak TF, Bateman JR (1980) Adriamycin given as a weekly schedule without a loading course: Clinically effective with reduced incidence of cardiotoxicity. Cancer Treat Rep 64:47–51

    PubMed  CAS  Google Scholar 

  12. Daugherty JP, Wheat M, Conley S, Cooley E, Vanzant C, Loggins L, Durant JR (1982) Involvement of reactive oxygen species in adriamycin cardiotoxicity. Proc Am Ass Cancer Res 23:171

    Google Scholar 

  13. Di Marco A (1975) Adriamycin: Mode and mechanism of action. Cancer Chemother Rep 3:91–106

    Google Scholar 

  14. Doroshow JH, Locker GY, Baldinger J, Myers CE (1979) The effect of doxorubicin on hepatic and cardiac glutathine. Res Commun Chem Pathol Pharmacol 26:285–295

    PubMed  CAS  Google Scholar 

  15. Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites. Alterations produced by doxorubicin. J Clin Invest 65:128–135

    Article  PubMed  CAS  Google Scholar 

  16. Doroshow JH, Locker GY, Ifrim I, Myers CE (1981) Prevention of doxorubicin cardiac toxicity in the mouse by N-acetic cysteine. J Clin Invest 68:1053–1064

    Article  PubMed  CAS  Google Scholar 

  17. Doroshow JH, Reevers J (1981) Daunomycin-stimulated reactive oxygen metabolism in cardiac sarcosomes. Biochem Pharmacol 30:259–262

    Article  PubMed  CAS  Google Scholar 

  18. Formelli F, Zedeck MS, Stemberg SS, Philips FS (1978) Effects of adriamycin on DNA synthesis in mouse and rat heart. Cancer Res 38:3286–3292

    PubMed  CAS  Google Scholar 

  19. Freeman RW, MacDonald JS, Olson RD, Boerth RC, Oates JA, Harbison RD (1980) Effect of sulfhydryl-containing compounds on the antitumor effects of adriamycin. Toxicol Appl Pharmacol 54:168–175

    Article  PubMed  CAS  Google Scholar 

  20. Fujita K et al. (1982) Reduction of adriamycin toxicity by ascorbate in mice and guinea pigs. Cancer Res 42:309–316

    PubMed  CAS  Google Scholar 

  21. Garbrecht M, Müllerleile P, Hanrath P, Langenstein B, Krüger W (1981) Eine mögliche Prävention der adriamycininduzierten Kardiomyopathie durch Kalziumantagonisten. Beitr Onkol 9:43–48. Karger, Basel

    Google Scholar 

  22. Goodman J, Hochstein P (1977) Generation of free radicals and lipid peroxidation by redox cycUng of adriamycin and daunomycin. Biochem Biophys Res Commun 77:797–803

    Article  PubMed  CAS  Google Scholar 

  23. Guthrie D, Gibson AL (1977) Doxorubicin cardiotoxicity. Possible role of digoxin in its prevention. Br Med J 2:1447–1449

    Article  PubMed  CAS  Google Scholar 

  24. Handa K, Sato S (1975) Generation of free radicals of quinone group-containing anticancer chemicals in an NADPH-microsome system as evidenced by initiation of sulfite oxidation. Gann 66:43–47

    PubMed  CAS  Google Scholar 

  25. Herman E, Ardalan B, Bier C, Waravdekar V, Krop S (1979) Reduction of daunorubicin lethality and myocardial cellular alterations by pretreatment with ICRF-187 in Syrian golden hamsters. Cancer Treat Rep 63:89–92

    PubMed  CAS  Google Scholar 

  26. Hixon SC, Ellis CN, Daugherty JP (1981) Heart mitochondrial DNA synthesis: Preferential inhibition by adriamycin. J Mol Cell Cardiol 13:855–860

    Article  PubMed  CAS  Google Scholar 

  27. Iwamoto Y, Hansen IL, Proter TH, Folkers K (1974) Inhibition of coenzyme Q10-enzymes, succinoxidase and NADH-oxidase by adriamycin and other quinones having antitumor activity. Biochem Biophys Res Commun 58:633–638

    Article  PubMed  CAS  Google Scholar 

  28. Kappus H, Muliawan H, Scheulen ME (1980) In vivo studies on adriamycin-induced lipid peroxidation and effects of ferrous ions. In: Holmstedt B, Lauwerys R, Mercier M, Roberfroid M (eds) Mechanisms of Toxicity and Hazard Evaluation. Elsevier/North-Holland, Amsterdam, pp 635–638

    Google Scholar 

  29. Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation. Experientia 37:1233–1241

    Article  PubMed  CAS  Google Scholar 

  30. Kishi T, Watanabe T, Folkers K (1976) Bioenergetics in clinical medicine: Prevention by forms of coenzyme Q of the inhibition by adriamycin of coenzyme Q10-enzymes in mitochondria of the myocardium. Proc Natl Acad Sci USA 73:4653–4656

    Article  PubMed  CAS  Google Scholar 

  31. Komiyama T, Kikuchi T, Sugiura Y (1982) Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase. Biochem Pharmacol 31:3651–3656

    Article  PubMed  CAS  Google Scholar 

  32. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) Clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Article  PubMed  CAS  Google Scholar 

  33. Legha SS et al. (1982) Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 96:133–139

    PubMed  CAS  Google Scholar 

  34. Locker GY, Doroshow JH, Myers CE (1977) Glutathione peroxidase: Its role in adriamycin cardiotoxicity. Proc Am Ass Cancer Res 18:87

    Google Scholar 

  35. Mailer K, Petering DH (1976) Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin. Biochem Pharmacol 25:2085–2089

    Article  PubMed  CAS  Google Scholar 

  36. Mimnaugh EG, Siddik ZH, Drew R, Sikic BI, Gram TE (1979) The effects of alpha-toco-pherol on the toxicity, disposition and metabolism of adriamycin in mice. Toxicol Appl Pharmacol 49:119–126

    Article  PubMed  CAS  Google Scholar 

  37. Momparler RL, Karon M, Siegel SE, Avila F (1976) Effect of adriamycin on DNA, RNA and protein synthesis in cell-free system and intact cells. Cancer Res 36:2891–2895

    PubMed  CAS  Google Scholar 

  38. Muliawan H, Scheuten ME, Kappus H (1980) Acute adriamycin treatment of rats does not increase ethane expiration. Res Commun Chem Pathol Pharmacol 30:509–519

    PubMed  CAS  Google Scholar 

  39. Muliawan H, Scheuten ME, Kappus H (1982) Adriamycin stimulates only the iron-induced, NADPH-dependent microsomal alkane formation. Biochem Pharmacol 31: 3147–3150

    Article  PubMed  CAS  Google Scholar 

  40. Myers CE (persönliche Mitteilung)

    Google Scholar 

  41. Myers CE (1982) The role of free radical damage in the genesis of doxorubicin cardiac toxicity. In: Muggia FM, Young CW, Carter SK (eds) Anthracycline Antibiotics in Cancer Therapy. Developments in Oncology 10:297–305. Martinus Nijhoff, The Hague

    CAS  Google Scholar 

  42. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC (1977) Adriamycm: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167

    Article  PubMed  CAS  Google Scholar 

  43. Myers CE, McGuire WP, Young RC (1976) Adriamycin: Amelioration of toxicity by alpha-tocopherol. Cancer Treat Rep 60:961–962

    PubMed  CAS  Google Scholar 

  44. Newman RA, Hacker MP, Krakoff IH (1981) Amelioration of adriamycin and daunorubicin myocardial toxicity by adenosine. Cancer Res 41:3483–3488

    PubMed  CAS  Google Scholar 

  45. Olson HM, Young DM, Prieur DJ, Leroy AF, Reagan R (1974) Electrolyte and morphologic alterations of myocardium in adriamycin-treated rabbits. Am J Pathol 77:439–450

    PubMed  CAS  Google Scholar 

  46. Olson RD, MacDonald JS, Harbison RD, van Boxtel CJ, Boerth RC, Slonin AE, Oates JA (1977) Altered myocardial glutathione levels: A possible mechanism of adriamycin toxicity. Fed Proc 36:303

    Google Scholar 

  47. Olson RD et al. (1980) Regulatory role of glutathione and soluble sulfhydryl groups in the toxicity of adriamycin. J Pharmacol Exp Ther 215:450–454

    PubMed  CAS  Google Scholar 

  48. Paul C, Lönnqvist B, Gahrton G, Lockner D, Peterson C (1981) Reducing the cardiotoxicity of anthracyclines by complex-binding to DNA: Report of three cases. Cancer 48:1531–1534

    Article  PubMed  CAS  Google Scholar 

  49. Prestayko AW, Duvernay VH, Long BH, Crooke ST (1982) Effects of anthracyclines on macromolecules and their syntheses. In: Muggia FM, Young CW, Carter SK (eds) Anthracycline Antibiotics in Cancer Therapy. Developments in Oncology 10:117–124. Martinus Nijhoff, The Hague

    CAS  Google Scholar 

  50. Rahman A, More N, Schein PS (1982) Doxorubicin-induced chronic cardiotoxicity and its protection by liposomal administration. Cancer Res 42:1817–1825

    PubMed  CAS  Google Scholar 

  51. Revis NW, Marusic N (1978) Glutathione peroxidase activity and selenium concentration in the hearts of doxorubicin-treated rabbits. J Mol Cell Cardiol 10:945–951

    Article  PubMed  CAS  Google Scholar 

  52. Ross W (1980) Adriamycin-induced DNA double strand breaks. Proc Am Ass Cancer Res 21:274

    Google Scholar 

  53. Scheuten ME (1981) Biochemische Ursachen der kumulativen Anthracyclin-Kardiotoxizität — Ansatzpunkte für eine kardioprotektive Begleittherapie? Beitr Onkol 9:64–75. Karger, Basel

    Google Scholar 

  54. Scheuten ME, Kappus H (1982) Metabolie activation of adriamycin by NADPH-cytochrome P-450 reductase, rat Hver and heart microsomes and covalent protein binding of metabolites. In: Snyder R et al. (eds) Biological Reactive Intermediates II. Advances in Experimental Medicine and Biology 136:471–485. Plenum, New York

    Google Scholar 

  55. Scheuten ME, Kappus H, Nienhaus A, Schmidt CG (1982) Covalent protein binding of reactive adriamycin metabolites in rat liver and rat heart microsomes. J Cancer Res Clin Oncol 103:39–48

    Article  Google Scholar 

  56. Scheuten ME, Muliawan H, Kappus H (1982) The rote of acute lipid peroxidation m doxorubicin cardiotoxicity. In: Muggia FM, Young CW, Carter SK (eds) Anthracycline Antibiotics in Cancer Therapy. Developments in Oncology 10:159–164. Martinus Nijhoff, The Hague

    Google Scholar 

  57. Scheuten ME, Niederle N, Seeber S (1980) Ergebnisse einer klinischen Phase II-Studie von Ifosfamid bei therapiefraktären malignen Erkrankungen. Vergleich der uroprotektiven Wirkung von Uromitexan ® mit forcierter Diurese und Alkalisierung des Urins. Beitr Onkol 5:40–47. Karger, Basel

    Google Scholar 

  58. Scheuten ME, Schmitt-Gräff A, Thyssen D (im Druck) Niacin, isocitrate and N-acetylcysteine — potential cardioprotectors in the course of doxorubicin-therapy. Verh Dtsch Krebs- Ges 4

    Google Scholar 

  59. Sinha BK, Sik RH (1980) Binding of (14C)-adriamycin to cellular macromolecules in vitro. Biochem Pharmacol 29:1867–1868

    Article  PubMed  CAS  Google Scholar 

  60. Taylor D, Hochstein P (1978) Inhibition by adriamycin of metmyoglobin reductase from beef heart. Biochem Pharmacol 27:2079–2082

    Article  PubMed  CAS  Google Scholar 

  61. Tritton TR, Yee G (1982) The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217:249–250

    Article  Google Scholar 

  62. Trouet A, Deprez-de Campeneere D, de Duve C (1972) Chemotherapy through lysosomes with DNA-daunorubicin complex. Nature 239:110–112

    Article  CAS  Google Scholar 

  63. Vleet JF van, Ferrans VJ (1980) Evaluation of vitamin E and selenium protection against chronic adriamycin toxicity in rabbits. Cancer Treat Rep 64:315–317

    PubMed  Google Scholar 

  64. Wang G, Finch MD, Trevan D, Hellmann K (1981) Reduction of daunomycin toxicity by razoxane. Br J Cancer 43:871–877

    Article  PubMed  CAS  Google Scholar 

  65. Wang Y-M, Madanat FF, Kimball JC, Gleiser CA, Ali MK, Kaufman MW, van Eys J (1980) Effect of vitamin E against adriamycin-induced toxicity in rabbits. Cancer Res 40:1022–1027

    PubMed  CAS  Google Scholar 

  66. Weiss AJ, Metier GE, Fletcher WS, Wilson WL, Grage TB, Ramirez G (1976) Studies on adriamycin using a weekly regimen demonstrating its clinical effectiveness and lack of cardiac toxicity. Cancer Treat Rep 60:813–822

    PubMed  CAS  Google Scholar 

  67. Yamanaka N, Kato T, Nishida K, Fujikawa T, Fukushima M, Ota K (1979) Elevation of serum Hpid peroxide level associated with doxorubicin toxicity and its amelioration by (dl)-alpha-tocopherol acetate or coenzyme Q10 in mouse. Cancer Chemother Pharmacol 3:223–227

    Article  PubMed  CAS  Google Scholar 

  68. Yasumi M, Minaga T, Takamura K, Kizu A, Ijichi H (1980) Inhibition of cardiac NADP-linked isocitrate dehydrogenase by adriamycin. Biochem Biophys Res Commun 93: 631–636

    Article  PubMed  CAS  Google Scholar 

  69. Zak R (1973) Cell proliferation during cardiac growth. Am J Cardiol 31:211–219

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheulen, M.E. (1983). Kumulative Anthracyclin-Kardiotoxizität. Möglichkeiten für eine kardioselektive Protektion durch Begleittherapie mit Isozitrat und Niacin. In: Schmidt, C.G. (eds) Aktuelle Probleme der Hämatologie und internistischen Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68998-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68998-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12241-8

  • Online ISBN: 978-3-642-68998-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics