Skip to main content

Enzyme Cytochemistry of the Cerebral Microvessel Wall

  • Conference paper
Cerebrovascular Transport Mechanisms

Part of the book series: Acta Neuropathologica Supplementum ((NEUROPATHOLOGIC,volume 8))

Summary

The cytochemical localisation of five hydrolytic enzymes has been studied in the brain capillaries of laboratory animals. Acid phosphatase is present in primary lysosomes of endothelial cells; alkaline phosphatase activity is seen mainly on the plasma membrane of the luminal side but also in the basal lamina. The latter is also active concerning 5’nucleotidase. Butyrylcholinesterase is an enzyme synthesized by most brain capillary endothelial cells, as can be seen by intensive staining of endoplasmic reticulum cisternae. In contrast acetylcholinesterase activity at the capillaries presumably is of neuronal origin. Local neurons appear to secrete this enzyme, which then reaches the endothelial basal lamina via the extracellular spaces. From these cytochemical observations it is concluded that pinocytotic traffic in brain endothelial cells is predominantly from the brain tissue side to the luminal side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dempsey EW, Wislocki GB (1955) An electron microscopic study of the blood-brain barrier of the rat, employing silver nitrate as a vital stain. J biophys biochem Cytol 1: 245–256

    Article  PubMed  CAS  Google Scholar 

  2. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677

    Article  PubMed  CAS  Google Scholar 

  3. Reese TS, Karnovska MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217

    Article  PubMed  CAS  Google Scholar 

  4. Brightman MW, Klatzko I, Olsson Y, Reese TS (1970) The blood-brain barrier to proteins under normal and pathological conditions. J neurol sci 10: 215–239

    Article  PubMed  CAS  Google Scholar 

  5. Kreutzberg GW, Hager H (1966) Electron microscopical demonstration of acid phosphatase activity in the central nervous system. Histochemie 6: 254–259

    Article  PubMed  CAS  Google Scholar 

  6. Mayahara H, Hirano H, Saito T, Ogawa K (1967) The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophos-phoric monoesterphoshydrolase). Histochemie 11: 88–96

    Article  PubMed  CAS  Google Scholar 

  7. Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiologic pH with special reference to the demonstration of bile canaliculi. Amer J clin Path 27: 13–23

    CAS  Google Scholar 

  8. Kreutzberg GW, Barron KD, Schubert P (1978) Cytochemical localization of 5′nucleotidase in glial plasma membranes. Brain Res 158: 247–257

    Article  PubMed  CAS  Google Scholar 

  9. Lewis PR, Shute CC (1969) An electron microscopic study of cholinesterase in the rat adrenal medulla. J Microsc (Oxford) 89: 181–193

    Article  CAS  Google Scholar 

  10. Kaiya H, Moriuchi I, Mikami T, Weikert M, Kreutzberg GW (1976) Increase of alkaline phosphatase in the blood vessel walls as a parameter for axon reaction and its blocking by actinomycin D. Adv Neurol Sci (Tokio) 20: 131–139

    Google Scholar 

  11. Rowan RA, Maxwell DS (1981) An ultrastructural study of vascular proliferation and vascular alkaline phosphatase activity in the developing cerebral cortex of the rat. Amer J Anat 160: 257–265

    Article  PubMed  CAS  Google Scholar 

  12. Kreutzberg GW, Tóth L, Weikert M, Schubert P (1974) Changes in perineuronal capillaries accompanying chromatolysis of motoneurons. In: Cervos-Navarro J (ed) Pathology of Cerebral Microcirculation. Walter de Gruyter, Berlin, New York, pp 282–288

    Google Scholar 

  13. Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW (1980) Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflügers Arch 387: 245–251

    Article  PubMed  CAS  Google Scholar 

  14. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain. Circ Res 35: 262–271

    CAS  Google Scholar 

  15. Rubio R, Berne RM, Winn HR (1978) Production, metabolism and possible functions of adenosine in brain tissue in situ. In: Cerebral Vascular Smooth Muscle and its Control (Ciba Foundation Symposium 56 (new series)) Elsevier Excerpta Medica, Amsterdam Oxford New York, pp 355–373

    Google Scholar 

  16. Flumerfelt BA, Lewis PR, Gwyn DG (1973) Cholinesterase activity of capillaries in the rat brain. A light and electron microscopic study. Histochemical J 5: 67–77

    Article  CAS  Google Scholar 

  17. Koelle GB (1954) The histochemical localization of cholinesterase in the central nervous system of the rat. J comp Neurol 100: 211–235

    Article  PubMed  CAS  Google Scholar 

  18. Karcsú S, Tóth L (1982) Die Veränderungen der Butyryl-cholinesterase-Aktivität der fenestrierten Capillaren in der Area postrema während der postnatalen Entwicklung. Acta histochem 71: 83–94

    PubMed  Google Scholar 

  19. Joó F, Scillik B (1966) Topographical correlation between the hematoencephalic barrier and the cholinesterase activity of brain capillaries. Exp Brain Res 1: 147–151

    Article  PubMed  Google Scholar 

  20. Chubb IW, Hodgson AJ, White GH (1980) Acetylcholinesterase hydrolyzes Substance P. Neuroscience 5: 2965–2972

    Article  Google Scholar 

  21. Kreutzberg GW, Kaiya H, Tóth L (1979) Distribution and origin of acetylcholinesterase activity in the capillaries of the brain. Histochemistry 61: 111–122

    Article  PubMed  CAS  Google Scholar 

  22. Butcher LL, Talbot K (1978) Acetylcholinesterase in rat nigro-neostriatal neurons: experimental verification and evidence for cholinergic-dopaminergic interactions in the substantia nigra and caudate-putamen complex. In: Butcher LL (ed) Cholinergic-Monoaminergic Interactions in the Brain, Academic Press, New York San Francisco London, pp 25–95

    Google Scholar 

  23. Kreutzberg GW, Tóth L (1974) Dendritic secretion: a way for the neuron to communicate with the vasculature. Naturwissenschaften 61: 37

    Article  PubMed  CAS  Google Scholar 

  24. Kreutzberg GW, Tóth L, Kaiya H (1975) Acetylcholinesterase as a marker for dendritic transport and dendritic secretion. Adv Neurol 12: 269–281

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Kreutzberg, G.W., Tóth, L. (1983). Enzyme Cytochemistry of the Cerebral Microvessel Wall. In: Hossmann, KA., Klatzo, I. (eds) Cerebrovascular Transport Mechanisms. Acta Neuropathologica Supplementum, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68970-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68970-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12204-3

  • Online ISBN: 978-3-642-68970-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics