Skip to main content

Der Assoziationscortex

  • Chapter
Book cover Cortex Cerebri
  • 187 Accesses

Zusammenfassung

Der homotypische Cortex des Parietal-, Frontal- und Temporal-Lappens wird seit Flechsig (7.1/19) als parietale, occipito-temporale, temporale und frontale Assoziationsrinde bezeichnet. Die Abgrenzung dieser Gebiete vom übrigen Neocortex begründete Flechsig damit, daß sie keine direkten Afferenzen aus den Sinnesorganen und nicht einmal - was sich inzwischen als unrichtig herausgestellt hat - aus dem Thalamus erhielten und keine direkten motorischen Efferenzen besäßen, sondern mit der sensorischen und motorischen Peripherie nur über „Assoziationsfasern“ aus den ihnen vor- oder nachgeordneten sensorischen und motorischen Cortexfeldern in Verbindung stünden. Jackson hatte diese Teile der Hirnrinde als „höchste Ebene“ (highest level) bezeichnet, denen die motorischen Rindenfelder der „mittleren Ebene“ unterstellt seien (s. Kap. 6.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zusammenfassende Darstellung über höhere Funktionen der Hirnrinde (Neuropsychologie)

  1. Brown, J.W.: Aphasia, Apraxia and Agnosia. Charles C. Thomas Publ., Springfield/Ill. (1972).

    Google Scholar 

  2. Hecaen, H. and M.L. Albert: Human neuropsychology. John Wiley and Sons, New York (1978).

    Google Scholar 

  3. Kleist, K.: Gehirnpathologie. Leizpig, Barth (1934).

    Google Scholar 

  4. Kolb, B. and I.Q. Whishaw: Fundamentals of human neuropsychology. W.H. Freemann und Co., San Francisco (1980).

    Google Scholar 

  5. Lange, J.: Agnosien und Apraxien. pp. 807–960. In: Bumke, O. und O. Foerster (Herausg.): Handbuch der Neurologie. Band 6. Springer-Verlag, Berlin (1936).

    Google Scholar 

  6. Luria, A.R.: Higher cortical functions in man. Basic Books Publ., New York (1966).

    Google Scholar 

  7. McFie, J.: The diagnostic significance of disorders of higher nervous activity. Syndroms related to frontal, temporal, parietal and occipital lesions. pp. 1–12. In: P.J. Vinken and G.W. Bruyn (Eds.) (7/11) (1969).

    Google Scholar 

  8. Milner, B.: Physiological Psychology. Holt, Rinehart and Winston, London, New York (1971).

    Google Scholar 

  9. Monakow, C. von: Die Lokalisation im Großhirn. J.F. Bergmann Verlag, Wiesbaden (1914).

    Google Scholar 

  10. Poeck, K. (Herausg.): Klinische Neuropsychologie. Georg Thieme Verlag, Stuttgart, New York (1982).

    Google Scholar 

  11. Vinken, P.J. and G.W. Bruyn (Eds.): Disorders of speach, perception and symbolic behaviour. Handbook of Neurology, Vol. 4, North Holland Publ. Comp., Amsterdam (1969).

    Google Scholar 

Kapitel 7.1: Der parietale Assoziationscortex

  1. Ajuriagerra, J. de and R. Tissot: Apraxias. pp. 48–66. In: Vinken, P.J. and G.W. Bruyn (Eds.): Handbook of Neurology, Vol. 2, North Holland Publ. Comp., Amsterdam (1969).

    Google Scholar 

  2. Allen, G.I. and N. Tsukahara: Cerebro-cerebellar communication systems. Physiol. Rev. 54, 957–1006 (1974).

    PubMed  CAS  Google Scholar 

  3. Critchley, M.: The parietal lobes. Arnold, London (1953).

    Google Scholar 

  4. Denny-Brown, D. and R.A. Chambers: The parietal lobe and behaviour. Res. Publ. Ass. Nerv. Ment. Dis. 36, 35–117 (1958).

    CAS  Google Scholar 

  5. Gordon, G. (Edit.): Active touch. The mechamism of recognition of objects by manipulation. Pergamon Press, Oxford (1978).

    Google Scholar 

  6. Hyvärinen, J.: The parietal cortex of monkey and man. Springer Verlag, Berlin, Heidelberg, New York (1982).

    Google Scholar 

  7. Jewesbury, E.C.O.: Parietal lobe syndroms. pp. 680–699. In: Vinken, P.J. and G.W. Bruyn (Eds.), Handbook of Clinical Neurology. Vol. 2, Localization in Clinical Neurology. North Holland Publ. Comp., Amsterdam (1969).

    Google Scholar 

  8. Pick, A.: Studien über motorische Apraxie und ihr nahe stehende Erscheinungen. F. Deuticke, Leipzig (1905).

    Google Scholar 

B: Einzelarbeiten

  1. Bailey, P., G. von Bonin and W.S. McCulloch: The neocortex of the chimpanzee. The University of Illinois Press, Urbana/Ill. (1950).

    Google Scholar 

  2. Bay, E.: Agnosie und Funktionswandel. Eine hirnpathologische Studie. Springer-Verlag, Berlin (1950).

    Google Scholar 

  3. Bates, J.A.V. and G. Ettlinger: Posterior biparietal ablations in the monkey. Archiv. Neurol. 3, 177–192 (1960).

    CAS  Google Scholar 

  4. Bender, D.B.: Retinotopic organization of the macaque pulvinar. J. Neurolphysiol. 46, 672–693 (1981).

    CAS  Google Scholar 

  5. Bender, D.B.: Receptive-field properties of neurons in the Macaque inferior pulvinar. J. Neurophysiol. 48, 1–17 (1982).

    PubMed  CAS  Google Scholar 

  6. Bonin, G. von and P. Bailey: The neocortex of Macaca mulatta. University of Illinois Press, Urbana/Ill. (1947).

    Google Scholar 

  7. Broadbent, H.W.: On the cerebral mechanism of speech and thought. Transactions Roy. Med. Chir. Soc. 55, 145–194 (1872).

    CAS  Google Scholar 

  8. Buser, P. et P. Borenstein: Reponses somesthésiques, visuelles et auditives, recueillies un niveau du cortex “associatif“ suprasylvien chez le chat curarisé non anesthésié. Electrenc. Clin. Neurophysiol. 11, 285–304 (1959).

    CAS  Google Scholar 

  9. Chalupa, L.M.: A review of cat and monkey studies implicating the pulvinar in visual function. Behav. Biol. 20, 146–167 (1977).

    Google Scholar 

  10. Denny-Brown, D. and B.Q. Banker: Amorphosynthesis from left parietal lesions. Arch. Neurol. Psychiatr. (Chicago) 72, 302–312 (1954).

    Google Scholar 

  11. Duensing, F.: Zur Frage der optisch-räumlichen Agnosie. Arch. Psychiatr. Nervenkr. 192, 185–206 (1954).

    CAS  Google Scholar 

  12. Duffy, F.H. and J.L. Burchfield: Somatosensory system: Organizational hierarchy from single units in monkey area 5. Science 172, 273–275 (1971).

    PubMed  CAS  Google Scholar 

  13. Flechsig, P.: Gehirn und Seele. 2. Auflage, Verlag Veit und Co., Leipzig (1896).

    Google Scholar 

  14. Foerster, O.: The cerebral cortex in man. Lancet 2, 309 (1931).

    Google Scholar 

  15. Fleming, J.F.R. and E.C. Crosby: The parietal lobe as an additional motor area. J. comp. Neurol. 103, 485–512 (1955).

    PubMed  CAS  Google Scholar 

  16. Holmes, G.: Disturbances of visual space perception. Brit. med. J. 2, 230–233 (1969).

    Google Scholar 

  17. Hartje, W. and G. Ettlinger: Reaching in light and dark after unilateral posterior parietal ablations in the monkey. Cortex 8, 344–352 (1973).

    Google Scholar 

  18. Hyvärinen, J.: Regional distribution of functions in parietal association area of the monkey. Brain Res. 206, 287–303 (1981).

    PubMed  Google Scholar 

  19. Hyvärinen, J. and A. Poranen: Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97, 673–692 (1974).

    PubMed  Google Scholar 

  20. Hyvärinen, J. and Y. Shelepin: Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res. 169, 561–564 (1979).

    PubMed  Google Scholar 

  21. Jung, R.: Neuropsychologie und Neurophysiologie des Kontur- und Formsehens in Zeichnung und Malerei. pp. 31–88. In: H.H. Wieck (Edit.): Psychopathologie musischer Gestaltungen. Schattauer Verlag, Stuttgart (1974).

    Google Scholar 

  22. Kleist, K.: Der Gang und der gegenwärtige Stand der Apraxieforschung. Ergebn. Neurol. Psychiatr. 1, 342 (1912).

    Google Scholar 

  23. Lamotte, R.H. and C. Acuna: Defects in accuracy of reaching after removal of posterior parietal cortex in man. Brain Res. 139, 309–326 (1978).

    PubMed  CAS  Google Scholar 

  24. Leinonen, L. and G. Nyman: Functional properties of cells in antero-lateral part of area 7: associative face area of awake monkey. Exp. Brain Res. 34, 321–333 (1979).

    PubMed  CAS  Google Scholar 

  25. Liepmann, H.: Das Krankheitsbild der Apraxia (“motorische Asymbolie“). Mschr. f. Psychiatr. u. Neurol. 8, 15–44, 102–132, 181–197 (1900).

    Google Scholar 

  26. Lin, C.-S. and J.H. Kaas: The inferior pulvinar complex in owl monkeys, architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. J. comp. Neurol. 187, 655–678 (1979).

    PubMed  CAS  Google Scholar 

  27. Lynch, J.C.: The functional organization of posterior parietal association cortex. The Behav. and Brain Sciences 3, 458–534 (1980).

    Google Scholar 

  28. Lynch, J.C., V.B. Mountcastle, W.H. Talbot and T.C.T. Yin: Parietal lobe mechanisms for directed visual attention. J. Neurophysiol. 40, 362–389 (1977).

    PubMed  CAS  Google Scholar 

  29. Marie, P., H. Bouttier and P. Bailey: La planotopokinésie. Etude sur des erreurs d’exécution de certains mouvements dans leur rapport avec la présentation spatiale. Rev. Neurol. 1, 505–512 (1922).

    Google Scholar 

  30. Mason, R.: Functional organization in the cat’s pulvinar complex. Exp. Brain Res. 31, 51–66 (1978).

    PubMed  CAS  Google Scholar 

  31. Matters, L.H. and S.C. Rapisardi: Visual and somato-sensory receptive field of neurons in the pulvinar of the squirrel monkey. Brain Res. 64, 65–84 (1973).

    Google Scholar 

  32. Mountcastle, V.B.: The world around us. Neural command functions for selective attention. Neurosciences Res. Progr. Bulletin 14, Supplement (1976).

    Google Scholar 

  33. Mountcastle, V.B., J.C. Lynch, A. Georgopoulos, H. Sakata and C. Acuna: The posterior parietal association cortex of the monkey: Command functions for operation in extrapersonal space. J. Neurophysiol. 38, 871–908 (1975).

    PubMed  CAS  Google Scholar 

  34. Pearson, R.C.A., P. Brodal and T.P.S. Powell: The projection of the thalamus upon the parietal lobe in the monkey. Brain Res. 144, 143–148 (1978).

    PubMed  CAS  Google Scholar 

  35. Petras, J.M.: Connections of the parietal lobe. J. psychiatr. Res. 8, 189–201 (1971).

    PubMed  CAS  Google Scholar 

  36. Poeck, K. and G. Lehmkuhl: Das Syndrom der ideatorischen Apraxie und seine Lokalisation. Nervenarzt 51, 217–225 (1980).

    PubMed  CAS  Google Scholar 

  37. Robertson, R.T.: Thalamic projections to parietal cortex. Brain Behav. Evol. 14, 161–184 (1977).

    PubMed  CAS  Google Scholar 

  38. Robertson, R.T. and E. Rinvik: The cortico-thalamic projections from parietal regions of the cerebral cortex. Experimental degeneration studies in the cat. Brain Res. 51, 61–79 (1973).

    PubMed  CAS  Google Scholar 

  39. Robinson, D.L., M.E. Goldberg and G.E. Stanton: Parietal association cortex in the primate: sensory mechamisms and behavioural modulations. J. Neurophysiol. 41, 910–932 (1978).

    PubMed  CAS  Google Scholar 

  40. Rolls, E.T., D. Perret, S.J. Tharpe, A. Puerto, A. Roper-Hall and S. Maddison: Responses of neurons in area 7 of the parietal cortex to objects of different significance. Brain Res. 169, 194–198 (1979).

    PubMed  CAS  Google Scholar 

  41. Sakata, H., H. Shibutani and K. Kawano: Parietal neurons with dual sensitivity to real and induced movements of visual target. Neuroscience Letters 9, 165–169 (1978).

    PubMed  CAS  Google Scholar 

  42. Sakata, H., H. Shibutani and K. Kawano: Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J. Neurophysiol. 43, 1654–1672 (1980).

    PubMed  CAS  Google Scholar 

  43. Sakata, H., Y. Takaoka, A. Kawarasaki and H. Shibutani: Somatosensory porperties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res. 64, 85–102 (1973).

    PubMed  CAS  Google Scholar 

  44. Warrington, E.K.: Constructional apraxia. pp. 67–83. In: Vinken, P.J. and G.W. Bruyn (Eds.) (7/11) (1969).

    Google Scholar 

Kapitel 7.2: Temporaler Assoziationscortex

  1. Gross, Ch.G.: Visual functions of inferotemporal cortex. pp. 451–482. In: Jung, R. (Edit): Handbook of Sensory Physiology, Vol. VII/3B, Visual centers in the brain. Springer-Verlag, Berlin, Heidelberg, New York (1973).

    Google Scholar 

  2. Sperling, E. and O.D. Creutzfeldt: Der Temporallappen. Fortschr. Neurologie Psychiatrie, 27, 296–34 (1959) (Komplette Literaturübersicht bis 1959).

    Google Scholar 

  3. Weiskrantz, L.: The interaction between occipital and temporal cortex in vision. An overview. pp. 189–204. In: F.O. Schmitt and F.G. Warden (Eds.): The Neurosciences, Third Study Program. MIT-Press, Cambridge/Mass (1974).

    Google Scholar 

  4. Willjiams, D.: Temporal lobe syndromes. pp. 700–724. In: Vinken, P.J. and G.W. Bruyn (Eds.): Handbook of Clinical Neurology, Vol. 2, Localization in clinical Neurology. North Holland, Publ. Comp., Amsterdam (1969).

    Google Scholar 

B: Einzelarbeiten

  1. Akert, K., R.A. Gruesen, C.N. Woolsey and D.R. Meyer: Klüver-Bucy Syndrom in monkeys with neocortical ablations of temporal lobe. Brain 84, 480–498 (1961).

    PubMed  CAS  Google Scholar 

  2. Butter, C.M.: The effect of discrimination training on pattern equivalence in monkeys with inferotemporal and lateral striate lesions. Neuropsychologia 6, 27–40 (1968).

    Google Scholar 

  3. Chow, K.L.: A retrograde cell degeneration study of the cortical projection field of the pulvinar in the monkey. J. comp. Neurol. 93, 313–340 (1950).

    PubMed  CAS  Google Scholar 

  4. Chow, K.L.: Further studies on selective ablation of associative cortex in relation to visually mediated behaviour. J. comp. Physiol. Psychol. 45, 109–118 (1952).

    PubMed  CAS  Google Scholar 

  5. Cowey, A. and C.G. Gross: Effects of foveal prestriate and infero-temporal lesions on visual discrimination by rhesus monkeys. Exp. Brain Res. 11, 128–144 (1970).

    PubMed  CAS  Google Scholar 

  6. Creutzfeldt, O.D.: Die Krampfausbreitung im Temorallappen der Katze. Schweizer Arch. Neurol. Psychiatr. 77, 163–194 (1956).

    CAS  Google Scholar 

  7. Critchley, M. and R.A. Henson (Eds.): Music and the brain. Heinemann Medical Books, London (1977).

    Google Scholar 

  8. Dell, P. and B.M. Bonvallet: Projections sensorielles au niveau de la région temporale. pp. 57–81. In: Alajouanine, Th. (Edit.): Les grandes activités du lobe temporal. Masson at Cie., Paris (1955).

    Google Scholar 

  9. Fox, C. A., R.R. Fisher and S.J. de Salva: The distribution of the anterior commissure in the monkey (Macaca mulatta). J. comp. Neurol. 89, 245–278 (1948).

    PubMed  CAS  Google Scholar 

  10. Gross, Ch.G., D.B. Bender and C.E. Rocha-Miranda: Infero-temporal cortex. A single unit analysis. pp. 229–238. In: F.O. Schmitt and F.G. Warden (Eds.): The Neurosciences, Third Study program. The MIT-Press, Cambridge/Mass. (1974).

    Google Scholar 

  11. Gross, C.G., D.B. Bender and G.L. Gerstein: Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia 17, 229–229 (1979).

    Google Scholar 

  12. Heath, C.J. and E.G. Jones: The anatomical organization of the suprasylvian gyrus of the cat. Ergebn. Anat. und Entwickl. 45, 1–64 (1971).

    Google Scholar 

  13. Iwai, E. and M. Mishkin: Two visual foci in the temporal lobe of monkeys. In: N. Yoshii and N.A. Buchwald (Eds.): Neurophysiological basis of learning and behaviour. Osaka University Press Osaka, Japan (1968).

    Google Scholar 

  14. Iwai, E., Y. Osawa and Y. Umitsu: Elevation of visual pattern discrimination limen in monkeys with total removal of inferotemporal cortex. Jap. J. Physiol. 29, 749–765 (1979).

    CAS  Google Scholar 

  15. Jones, E.G.: The anatomy of extrageniculo-striate visual mechanisms. pp. 215–227. In: F.O. Schmitt and F.G. Warden (Eds.): The Neurosciences, Third Study Program. The MIT-Press, Cambridge/Mass. (1974).

    Google Scholar 

  16. Kaada, B.R.: Somato-motor, autonomic and electro-corticographic responses to electrical stimulation of “rhinencephalic“ and other structures in primates, cats and dogs. Acta physiol. Scandin. 24, Suppl. 83(1951).

    Google Scholar 

  17. Klüver, H. and P. Bucy: “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Amer. J. Physiol. 119, 352–353 (1937).

    Google Scholar 

  18. Klüver, H. and P. Bucy: An analysis of certain effects of bilateral temporal lobectomy. In: The rhesus monkey with special reference to “psychic blindness”. J. Psychol. (Leipzig) 5, 33–54 (1938).

    Google Scholar 

  19. Kuypers, H.C.J.M., M. Szwarcbart, M. Mishkin and H.E. Rosvold: Occipitotemporal cortico-cortical connections in the rhesus monkey. Exper. Neurol. 11, 245–262 (1965).

    CAS  Google Scholar 

  20. Mishkin, M.: Cortical visual areas and their interactions. pp. 187–208. In: Karczmar, D.G. and J.C. Eccles (Eds.): Brain and human behaviour. Springer-Verlag, Berlin, Heidelberg, New York (1972).

    Google Scholar 

  21. Penfield, W.: The excitable cortex in conscious man. Liverpool University Press, Liverpool (1958).

    Google Scholar 

  22. Penfield, W. and P. Perot: The brain’s record of auditory and visual experience. Brain 86, 596–696 (1963).

    Google Scholar 

  23. Perret, D.I., E.T. Rolls and W. Caan: Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982).

    Google Scholar 

  24. Prelevic, S., W. McIntyre-Burnham and P. Gloor: A microelectrode study of amygdaloid afferents: temporal neocortical inputs. Brain Res. 10, 437–457 (1976).

    Google Scholar 

  25. Pribram, K.H.: Languages of the brain. Prentice Hall, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  26. Pribram, K.H., D.N. Spinelli and S.L. Reitz: The effects of radical disconnexion of occipital and temporal cortex on visual behaviour of monkeys. Brain 92, 301–312 (1969).

    PubMed  CAS  Google Scholar 

  27. Ridley, R.M., N.S. Hester and G. Ettlinger: Stimulus- and response-dependent units from the occipital and temporal lobes of the unanesthetised monkey performing learned visual tasks. Exp. Brain Res. 27, 239–552 (1977).

    Google Scholar 

  28. Rocha-Miranda, L.E., D.B. Bender, C.G. Gross and M. Mishkin: Visual activation of neurons in infero-temporal cortex depends on striate cortex and forebrain commissures. J. Neurolphysiol. 38, 475–491 (1975).

    CAS  Google Scholar 

  29. Rolls, E.T., S.J. Judge and M.K. Sanghera: Activity of neurons in the alert monkey. Brain Res. 130, 229–238 (1977).

    PubMed  CAS  Google Scholar 

  30. Sato, T., T. Kawamura and E. Iwai: Responsiveness of infero-temporal single units to visual pattern stimuli in monkeys performing discrimination. Exp. Brain Res. 38, 312–319 (1980).

    Google Scholar 

  31. Turner, B.H., M. Mishkin and M. Knapp: Organization of the amygdalopetal projections from modality specific association areas in the monkey. J. comp. Neurol. 191, 515–543 (1980).

    PubMed  CAS  Google Scholar 

  32. Tusa, R.J. and L.A. Palmer: Retinotopic organization of areas 20 and 21 in the cat. J. comp. Neurol. 193, 147–164 (1980).

    PubMed  CAS  Google Scholar 

  33. Ungerleider, L.G. and M. Mishkin: Two cortical visual systems. In: Ingle, D.J., R.J.W. Mansfield and M.A. Goodale (Eds.): Advances in the analysis of visual behavior. The MIT-Press, Cambridge/Mass (1980).

    Google Scholar 

  34. van Buren, J.M. and R.C. Borke: Variations of connections of the human thalamus. I. The nuclei and connections of the human thalamus. Springer-Verlag, Berlin, Heidelberg, New York (1972).

    Google Scholar 

  35. Whitlok, D.G. and J.H. W. Nauta : Subcortical projections from the temporal neocortex in Macaca Mulatta. J. comp. Neurol. 106, 183–212 (1956).

    Google Scholar 

  36. Zeki, S.M.: The projections to the superior temporal sulcus from areas 17 and 18 in the rhesus monkey. Proc. R. Soc. Lond. B. 193, 199–207 (1976).

    PubMed  CAS  Google Scholar 

  37. Zeki, S.M.: Uniformity and diversity of structure and function in rhesus monkey. J. Physiol. 277, 273–290(1978).

    PubMed  CAS  Google Scholar 

  38. Zeki, S.M.: The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex. Proc. R. Soc. Lond. B. 207, 239–248 (1980).

    PubMed  CAS  Google Scholar 

Kapitel 7.3: Der frontale Assoziationscortex

  1. Bechterew, W.: Die Funktionen der Nervencentra. Vol. 3, Fischer Verlag, Jena (1911).

    Google Scholar 

  2. Bianchi, L.: The mechanims of the brain and the function of the frontal lobes. Livingstone, Edinburgh (1923).

    Google Scholar 

  3. Feuchtwanger, E: Die Funktionen des Stimhims, ihre Pathologie und Psychologie. Springer-Verlag, Berlin (1923).

    Google Scholar 

  4. Fuster, J.M.: The prefrontal cortex. Anatomy, physiology and neuropsychology. Raven Press, New york (1980).

    Google Scholar 

  5. Häfner, H.: Psychopathologie des Stirnhirns 1935–1955. Fortschr. Neurol. Psychiatr. 25, 205–252 (1957).

    PubMed  Google Scholar 

  6. Konovski, J., H.L. Teuber and B. Zernicki (Eds.): The frontal granular cortex and behaviour. Acta Neurobiol. Exper. 32 (2) (1971).

    Google Scholar 

  7. Luria, A.R.: Frontal lobe syndroms. pp. 725–757. In: Vinken, P.J. and G.W. Bruyn (Eds.): Handbook of Clinical Neurology. Vol. 2: Localization in clinical Neurology. North Holland Publ. Comp., Amsterdam (1969).

    Google Scholar 

  8. Luria, A.R.: The frontal lobes and the regulation of behaviour. pp. 3–26. In: Pribram, K.H. and A.R. Luria (Eds.): Psychophysiology of the frontal lobes. Academic Press, New York, London (1973).

    Google Scholar 

  9. Nauta, W.J.H.: The problem of the frontal lobe. A reinterpretation. J. Psychiatr. Res. 8, 167–187 (1971).

    PubMed  CAS  Google Scholar 

  10. Pribram, K.H.: The intrinsic system of the forebrain. pp. 1323–1344. In: J. Field (Edit.): Handbook of Physiology, Neurophysiology. Section 1, Vol. II, Am. Physiol. Soc., Washington/DC (1960).

    Google Scholar 

  11. Pribram, K.H. and A.R. Luria (Eds.): Psychophysiology of the frontal lobes. Academic Press, New York and London (1973).

    Google Scholar 

  12. Warren, J.M.: Evolution, behavior and the prefrontal cortex. Acta Neurobiol. Exper. 32, 581–593 (1972).

    CAS  Google Scholar 

  13. Warren, J.M. and K. Akert (Eds.): The frontal granular cortex and behavior. McGraw Hill, New York (1964).

    Google Scholar 

B: Einzelarbeiten

  1. Benevento, L.A. and J.H. Fallon: The projection of occipital cortex to orbital cortex in the rhesus monkey (Macaca mulatta). Exper. Neurol. 46, 402–408 (1975).

    CAS  Google Scholar 

  2. Benevento, L.A., J. Fallon, B.J. Davis and M. Rezak: Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp. Neurol. 57, 849–872 (1977).

    PubMed  CAS  Google Scholar 

  3. Benevento, L.A. and P.R. Loe: An intracellular study of thalamo-cortical synapses in the orbitoinsular cortex. Exper. Neurol. 5, 634–643 (1975).

    Google Scholar 

  4. Brody, E.G. and H.E. Rosvold: Influence of prefrontal lobotomy on social interaction in a monkey group. Psychosom. Med. 14, 406–415, (1952).

    PubMed  CAS  Google Scholar 

  5. Denny-Brown, D. and R.A. Chambers: Visual orientation in the macaque monkey. Trans. Amer. Neurol. Ass. 83, 37 (1958).

    Google Scholar 

  6. Divac, I.: Delayed alternation in cats with lesions of the prefrontal cortex and the caudate nucleus. Physiol. and Behavior 8, 519–522 (1972).

    CAS  Google Scholar 

  7. Freeman, W. and Watts, J.W.: Psychochirurgie (Deutsche Übersetzung). Wissenschaftl. Verlagsanstalt, Stuttgart (1948).

    Google Scholar 

  8. Fuster, J.M.: Transient memory and neuronal activity in the thalamus. In: K.H. Pribram and A.R. Luria (Eds.) (7.3/11) (1973).

    Google Scholar 

  9. Fuster, J.M.: Unit activity in prefrontal cortex during delayed response performance. Neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78 (1973).

    PubMed  CAS  Google Scholar 

  10. Fuster, J.M. and G.E. Alexander: Delayed response deficit by cryogenic depression of frontal cortex. Brain Res. 20, 85–90 (1970).

    PubMed  CAS  Google Scholar 

  11. Fuster, J.M. and G.E. Alexander: Neuron activity related to short-term memory. Science 173, 652–654(1971).

    PubMed  CAS  Google Scholar 

  12. Fuster, J.M. and G.E. Alexander: Firing changes in the cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Res. 61, 79–91 (1973).

    PubMed  CAS  Google Scholar 

  13. Goldmann, P.S. and W.J.H. Nauta: Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Res. 116, 145–149 (1976).

    Google Scholar 

  14. Goldmann, P. and W.J. Nauta: An intricately patterned prefronto-caudate projection in the rhesus monkey. J. comp. Neurol. 171, 369–386 (1977).

    Google Scholar 

  15. Goldmann-Rakic, P.S.: Development and plasticity of primate frontal association cortex. pp. 69–97. In: F.O. Schmitt, F.G. Worden, G. Adelman and S.G. Dennies (Eds.): The organization of the cerebral cortex. MIT-Press, Cambridge/Mass (1981).

    Google Scholar 

  16. Groß, C.G.: Locomotor activity following lateral frontal lesions in rhesus monkey. J. comp. Physiol. Psychol. 56, 232–236 (1963).

    PubMed  Google Scholar 

  17. Iversen, S.D. and M. Mishkin: Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    PubMed  CAS  Google Scholar 

  18. Jacobsen, C.F.: Functions of the frontal association area in primates. Arch. Neurol. Psychiatr. 33, 558–569 (1935).

    Google Scholar 

  19. Jacobsen, C.F.: Studies of cerebral functions in primates. I. The functions of the frontal association areas in monkeys. Comp. Psychol. Monogr. 13, 3–60 (1936).

    Google Scholar 

  20. Jacobsen, C.F. and H.W. Nissen: Studies of cerebral function in primates. IV. The effects of frontal lobe lesions on the delayed alternation habit of monkeys. J. comp. Physiol. Psychol. 23, 101–112 (1937).

    Google Scholar 

  21. Kievit, J. and H.G.J.M. Kuypers: Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res. 29, 299–322 (1977).

    PubMed  CAS  Google Scholar 

  22. Kleist, K.: Die Störungen der Ich-Leistungen und ihre Lokalisation im Orbital-, Innen- und Zwischenhirn. Mschr. Psychiatr. und Neurol. 79, 338–350 (1931).

    Google Scholar 

  23. Kojima, Sh.: Prefrontal unit activity in the monkey, relation to visual stimuli and movements. Exp. Neurol. 69, 110–123 (1980).

    PubMed  CAS  Google Scholar 

  24. Kretschmer, E.: Die Orbitalhirn- und Zwischenhimsyndrome nach Schädelbasisfrakturen. Arch. J. Psychiatr. Zschr. Neurol. 182, 452–477 (1949).

    Google Scholar 

  25. Kubota, K., T. Iwamoto and H. Suzuki: Visuokinetic activities of primate prefrontal neurons during delayed-response performance. J. Neurophysiol. 37, 1197–1212 (1974).

    PubMed  CAS  Google Scholar 

  26. Kuypers, H.G.J.M.: The general organization of the thalamo-frontal connections in the rhesus monkey. pp. 10–20. In: J.E. Desmedt (ed.): Cerebral motor control in man. Long loop mechanisms. Progr. Clin. Neurophysiol. Vol. 4. Karger Verlag, Basel (1978).

    Google Scholar 

  27. Mettler, F.A.: Physiologic effects of bilateral simultaneous frontal lesions in the primate. J. comp. Neurol. 81, 105–136 (1944).

    Google Scholar 

  28. Mettler, F.A.: Extra-cortical connections of the primate frontal cerebral cortex. I. Thalamo-cortical connections. J. comp. Neurol. 86, 95–117 (1947).

    PubMed  CAS  Google Scholar 

  29. Mishkin, M.: Perseveration of central sets after frontal lesions in monkeys. pp. 219–241. In: Warren, J.M. and K. Akert (7.3/13) (1964).

    Google Scholar 

  30. Moniz, E.: Tentatives operatoires dans le traitement de certaines psychoses. Masson et Cie, Paris (1936).

    Google Scholar 

  31. Munk, H.: Über die Stirnlappen des Großhirns. Sitz. Ber. Preuss. Akad. Wissensch. 36, 753–789 (1882).

    Google Scholar 

  32. Myers, R.E.: Role of prefrontal and anterior temporal cortex in social behavior and affect in monkey. Acta Neurobiol. Exp. 32, 567–579 (1972).

    CAS  Google Scholar 

  33. Myers, R.E.: Neurology of social behavior and affect in primates. A study of prefrontal and anterior temporal cortex. pp. 161–170. In: K.J. Zülch, O.D. Creutzfeldt and G.C. Galbraith (Eds.): Cerebral localization. Springer-Verlag, Berlin, Heidelberg, New York (1975).

    Google Scholar 

  34. Nauta, W.J.H.: Neural association of the frontal cortex. Acta Neurobiol. Exp. 32, 125–140 (1972).

    CAS  Google Scholar 

  35. Nelson, C.N. and K.E. Bignall: Interactions of sensory and nonspecific thalamic inputs to cortical polysensory areas in the squirrel monkey. Exp. Neurol. 40, 189–206 (1973).

    PubMed  CAS  Google Scholar 

  36. Newman, J.D. and D.F. Lindsley: Single unit analysis of auditory processing in squirrel monkey frontal cortex. Exp. Brain Res. 25, 169–181 (1976).

    PubMed  CAS  Google Scholar 

  37. Risso, M., K. Poeck und O.D. Creutzfeldt: Katamnestische Untersuchungen nach frontaler Leukotomie. Bibliotheca Psychiatrica et Neurologica, Fasc. 116. Karger Verlag, Basel (1962).

    Google Scholar 

  38. Sakai, M. and I. Hamada: Intracellular activity and morphology of the prefrontal neurons related to visual attention in behaving monkeys. Exp. Brain Res. 41, 195–198 (1981).

    PubMed  CAS  Google Scholar 

  39. Schechter, P.B. and E.H. Murphy: Response characteristics of single cells in squirrel monkey frontal cortex. Brain Res. 96, 66–70 (1975).

    PubMed  CAS  Google Scholar 

  40. Skinner, J.E. and D.B. Lindsley: The non-specific mediothalamic frontocortical system. Its influence on electrocortical activity and behavior. pp. 185–234. In: K.H. Pribram and A.R. Luria (Eds.) (7.3/11) (1973).

    Google Scholar 

  41. Spatz, H.: Über die Anatomie, Entwicklung und Pathologie des “Basalen Neocortex”. Livre jubilaire du Dr. Ludo van Bogaert. pp. 766–779. In: Editions Acta med. belg. (1962).

    Google Scholar 

  42. Stamm, J.S. and S.C. Rosen: Electrical Stimulation and steady potential shifts in prefrontal cortex during delayed response performance by monkeys. Acta Biol. Exp. 29, 385–399 (1969).

    CAS  Google Scholar 

  43. Stamm, J.S. and M.G. Weber-Levine: Delayed alternation impairments following selective prefrontal cortical ablations in monkeys. Exp. Neurol. 33, 263–278 (1971).

    PubMed  CAS  Google Scholar 

  44. Suzuki, H. and M. Azuma: Prefrontal neuronal activity during gazing at a light spot in the monkey. Brain Res. 126, 497–508 (1977).

    PubMed  CAS  Google Scholar 

  45. Walter, W.G.: Slow potential waves in the human brain associated with expectancy, attention and decision. Arch. Psychiatr.. Nervenkr. 206, 309–322 (1964).

    PubMed  CAS  Google Scholar 

  46. Thorpe, S.J., E.T. Rolls and S. Maddison: The orbito-frontal cortex: Neuronal activity in the behaving animal. Exp. Brain Res. 48, 93–119 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creutzfeldt, O.D. (1983). Der Assoziationscortex. In: Cortex Cerebri. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68962-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68962-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68963-5

  • Online ISBN: 978-3-642-68962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics