Skip to main content

Spontane und evozierte elektrische Potentiale der Hirnrinde und deren neuronalen Grundlagen

  • Chapter
Cortex Cerebri
  • 180 Accesses

Zusammenfassung

Aktivitätsänderungen corticaler Nervenzellen führen zu Potentialschwankungen, die abgeschwächt auch von der Oberfläche der Hirnrinde registriert werden können. Diese spontan auftretenden Potentialschwankungen werden als Elektroencephalogramm (EEG) bezeichnet. Nach ersten Beobachtungen bei Tieren von Caton (1875) wurden sie von Hans Berger bei Menschen (1920) registriert und systematisch untersucht, der 1929 eine erste Übersicht über die verschiedenen Grundtypen des EEG des Menschen gab (26). Es zeigte sich, daß bestimmte typische EEG-Muster bestimmten Leistungszuständen des Gehirns (Aufmerksamkeit, Dösen etc.), bestimmten Bewußtseinszuständen (Wachen, Schlafen, verschiedene Tiefen des Coma) und charakteristischen pathologischen Störungen (Epilepsie, Durchblutungsstörungen, Tumoren) zugeordnet werden können. Es fanden sich charakteristische interindividuelle Unterschiede zwischen den EEG verschiedener Menschen, bestimmte EEG- Muster sind über verschiedenen Hirnregionen unterschiedlich ausgeprägt und variieren charakteristisch mit dem Lebensalter. Doch sagt das EEG nichts über die differenzierte Leistung des Gehirns oder gar über Bewußtseinsinhalte aus. Die durch physiologische oder elektrische Reizung ausgelösten Potentialveränderungen der Hirnrinde werden als evozierte Potentiale (EP) bezeichnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

A: Zusammenfassende Artikel

  1. Andersen, P. and S.A. Andersson: Physiological basis of the alpha rhythm. Appleton-Century- Cofts, New York (1968).

    Google Scholar 

  2. Andersen, P. and S.A. Andersson: Thalamic origine of cortical rhythmic activity. pp. 2C/90–2C/118. In: O. Creutzfeldt (Edit.) (4/3) (1976).

    Google Scholar 

  3. Bures, J., O. Buresova and J. Krivanek: The mechanisms and applications of Leao’s spreading depression of electroencephalographic activity. Academic Press, New York (1974).

    Google Scholar 

  4. Buser, P. (Edit.): Electrical reactions of the brain and complementary methods of evaluation Part A: Evoked responses. Handbook of Electroencephalgr. and Clin. Neuropysiology (A. Rémond, Edit.) Vol. 8A, Elsevier Publ. Comp., Amsterdam (1975).

    Google Scholar 

  5. Creutzfeldt, O.D.: Neurophysiologische Modelle der Epilepsie. Der Nervenarzt 43, 175–181 (1972).

    PubMed  CAS  Google Scholar 

  6. Creutzfeldt, O.D.: Neurophysiological correlates of different functional states of the brain. pp. 21–47. In: D. Ingvar and N.A. Lassen (Edit.) (4/8) (1975).

    Google Scholar 

  7. Creutzfeldt, O.D. and J. Houchin: Neuronal basis of EEG-waves. pp. 2C/3–2C/55. In: O. Creutzfeldt (Edit.) (4/3) (1976).

    Google Scholar 

  8. Creutzfeldt, O.D. and U. Kuhnt: Electrophysiology and topographical distribution of visual evoked potentials in animals. pp. 595–646. In: Handbook of Sensory Physiol. Vol. VII/3B (R. Jung, Edit.). Springer-Verlag, Berlin, Heidelberg, New York (1973).

    Google Scholar 

  9. Desmedt, J.E. (Edit.): Attention, voluntary contraction and event-related cerebral potentials. Progr. Clin. Neurophysiol., Vol. 1. Karger-Verlag, Basel (1977).

    Google Scholar 

  10. Desmedt, J.E. (Edit.): Cerebral motor control in man: Long loop mechanisms. Progress Clin. Neurophysiol. Vol. 4 (1978).

    Google Scholar 

  11. Desmedt, J.E. (Edit.): Cognitive component in cerebral event-related potentials and selective attention. Progr. Clin. Neurophysiol. Vol. 6. Karger-Verlag, Basel (1979).

    Google Scholar 

  12. Dumermuth, G.: Elektroencephalographie im Kindesalter. Einführung und Atlas. Georg Thieme Verlag, Stuttgart (1956).

    Google Scholar 

  13. Gibbs, F.A. and E.L. Gibbs: Atlas of electroencephalography, 2. edit., In: Methodology and controls. Addison-Wesly Press Inc., Cambridge (1950).

    Google Scholar 

  14. Halliday, A.M.: Clinical applications of evoked potentials. pp. 47–73. In: W.B. Matthews and G.H. Glaser: Recent advances in Clinical Neurology. Churchill Livingstone, Edinburgh etc. (1978).

    Google Scholar 

  15. Lairy, G.C. (Edit.): The evolution of the EEG- from birth to adulthood. Handbook of Electroencephalography and Clinical Neurophysiology (A. Rémond, Edit.), Vol. 6B. Elsevier Publ. Comp., Amsterdam (1975).

    Google Scholar 

  16. Jung, R.: Hirnpotentialwellen, Neuronenentladungen und Gleichspannungsphänomene. pp. 54–81. In: Jenenser Symposion 30 Jahre Elektrenzephalographie. VEB Verlag Volk und Gesundheit, Berlin (1963).

    Google Scholar 

  17. Jung, R.: Neurophysiologie und Psychiatrie. In: H.W. Gruhle u.a. (Edit.), Psychiatrie der Gegenwart. Springer-Verlag, Berlin, Heidelberg, New York (1967).

    Google Scholar 

  18. Kellaway, P. and I. Petersén: Clinical electroencephalography of children. Almquist and Wiksell, Stockholm (1968).

    Google Scholar 

  19. Penfíeld, W. and H. Jasper: Epilepsy and the functional anatomy of the human brain. Little, Brown and Comp., Boston (1954).

    Google Scholar 

  20. Passouant, P. (Edit.): EEG and Sleep. Handbook of Electroenceph. and Clinical Neurophysiol. (A. Rémond, Edit.), Vol. 7A. Elsevier Publ. Comp., Amsterdam (1975).

    Google Scholar 

  21. Prince, D.A.: Neuronal correlates of epileptiform discharges and cortical DC-potentials. pp. 2C/56–2C/70. In: O. Creutzfeldt (Edit.) (4/3) (1976).

    Google Scholar 

  22. Regan, D.: Evoked potentials in psychology, sensory physiology and clinical medicine. Chapman and Hill, London (1972).

    Google Scholar 

  23. Speckmann, E J. and H. Caspers: The effect of O2- and CO2-tensions in the nervous tissue on neuronal activity and DC-potentials. pp. 2C/71–2C/89. In: O. Creutzfeldt (Edit.) (4/3) (1976).

    Google Scholar 

  24. Stöhr, M., J. Dichgans, M.C. Diener und W.W. Buettner: Evozierte Potentiale (SEP-VEP-AEP). Springer-Verlag, Berlin, Heidelberg, New York (1982).

    Google Scholar 

B: Einzelarbeiten

  1. Adrian, E.D.: The spread of activity in the cerebral cortex. J. Physiol. (Lond.) 88, 127–161 (1936).

    CAS  Google Scholar 

  2. Arezzo, J., H.G. Vaughan and B. Koss: Relationship of neuronal activity to gross movement related potentials in monkey pre- and post-central cortex. Brain Res. 132, 362–369 (1977).

    Article  PubMed  CAS  Google Scholar 

  3. Berger, H.: Über das Elektroenzephalogramm des Menschen. 1.-9. Mitteilung (1929–1938). Zusammenfassung: Nova Acta Leopoldina, N.F. 6, 173–309 (1938).

    Google Scholar 

  4. Caspers, H.: Changes of cortical DC-potentials in the sleep-wakefulness cycle. pp. 237–253. In: G.E.W. Wolstenholm and M. O’Connor (Eds.): The nature of sleep. Churchill, London (1961).

    Google Scholar 

  5. Chang. H.T.: Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J. Neurophysiol. 14, 1–21 (1951).

    PubMed  CAS  Google Scholar 

  6. Conrad, B., K. Matsunami, J. Meyer-Lohmann, M. Wiesendanger and V.B. Brooks: Cortical load compensation during voluntary elbow movements. Brain Res. 71, 507–514 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. Creutzfeldt, O.D.: Die Krampfausbreitung im Temporallappen der Katze. Die Krampfentladungen im Ammonshorn und ihre Beziehungen zum übrigen Rhinencephalon. Schweizer Arch. Neurol. und Psychiatr. 77, 163–194(1956).

    CAS  Google Scholar 

  8. Creutzfeldt, O.D.: Transfer function of the retina. Electroenceph. Clin. Neurophysiol. Suppl. 31, 159–169(1972).

    Google Scholar 

  9. Creutzfeldt, O.D., G. Grünewald, O. Simonova and H. Schmitz: Changes of the basic rhythm of the EEG during the performance of mental and visual motor tasks. pp. 148–168. In: C.R. Evans and, T.B. Mulhollnad (Eds.): Attention in Neurophysiology. Butterworth, London (1969).

    Google Scholar 

  10. Creutzfeldt, O.D., P.-M. Arnold, D. Becker, S. Langenstein, W. Tirsch, H. Wilhelm und W. Wuttke: EEG-changes during spontaneous and controlled menstrual cycles and their correlation with psychological performance. Electroenceph. Clin. Neurophysiol. 40, 113–131 (1976).

    Article  PubMed  CAS  Google Scholar 

  11. Creutzfeldt, O.D., S. Watanabe and H.D. Lux: Relation between EEG-phenomena and potentials of single cells. Part I and II. Electroenceph. Clin. Neurophysiol. 20, 1–37 (1966).

    Article  PubMed  CAS  Google Scholar 

  12. Deecke, L., P. Scheid and H.H. Kornhuber: Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Exp. Brain Res. 7, 158–168 (1969).

    Article  PubMed  CAS  Google Scholar 

  13. Dement, W. and N. Kleitman: Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming. Electroenceph. Clin. Neurophysiol. 9, 673–690 (1957).

    Article  PubMed  CAS  Google Scholar 

  14. Dempsey, E.W. and R.S. Morison: The interaction of certain spontaneous and induced cortical potentials. Amer. J. Physiol. 135, 301–308 (1942).

    Google Scholar 

  15. Desmedt, J.E. and D. Robertson: Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J. Physiol. (Lond.) 271, 761–782 (1977).

    CAS  Google Scholar 

  16. Desmedt, J.E. and G. Cheron: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components. Electroenceph. Clin. Neurophysiol. 52, 553–570 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. Evarts, E.V.: Pyramidal tract activity associated with a conditioned hand movement in the monkey. J. Neurophysiol. 29, 1011–1027 (1966).

    PubMed  CAS  Google Scholar 

  18. Heinemann, U., H.D. Lux and M.J. Gutnick: Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex. Exp. Brain Res. 27, 237–243 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. Hoovey, Z.B., U. Heinemann und O. Creutzfeldt: Interhemispheric “synchrony” of alpha waves. Electroenceph. Clin. Neurophysiol. 32, 337–347 (1972).

    Article  PubMed  CAS  Google Scholar 

  20. Hossmann, K.A. and V. Zimmermann: Resuscitation of the monkey brain after 1h complete ischemia. I. Physiological and morphological observations. Brain Res. 81, 59–74 (1974).

    Article  PubMed  CAS  Google Scholar 

  21. Jackson, J.H.: Selected writings. Vol. I: On epilepsy and epileptiform convulsions. Edit. by J. Taylor, Hodder and Stroughton, London, 1931. (Neuaufl.: Basic Books, Incorp., 1958).

    Google Scholar 

  22. Jung, R.: Hirnelektrische Untersuchungen über den Elektrokrampf: Die Erregungsabläufe in corticalen Hirnregionen bei Katze und Hund. Arch. Psychiatr. Nervenkr. 183, 206–244 (1949).

    Article  Google Scholar 

  23. Lindsley, D.B.: Electrical potentials of the brain in children and adults. J. gen. Psycho. 19, 285–306 (1938).

    Article  Google Scholar 

  24. Loomis, A.L., E.N. Harvey and G. Hobart: Electrical potentials of the human brain. J. exp. Psychol. 19, 249–279(1936).

    Article  Google Scholar 

  25. Lücking, C.H., O.D. Creutzfeldt and U. Heinemann: Visual evoked potentials of patients with epilepsy and of a control group. Electroenceph. Clin. Neurophysiol. 29, 557–566 (1970).

    Article  PubMed  Google Scholar 

  26. Mitzdorf, U. and W. Singer: Prominent excitatory pathway in the cat visual cortex (A17 and A18): A current source density analysis of electrically evoked potentials. Exp. Brain Res. 33, 371–394 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. Morison, R.S. and Dempsey, E.W.: Mechamisms of thalamo-cortical augmentation and repitition. Amer. J. Physiol. 138, 297–308 (1943).

    Google Scholar 

  28. Popper, K.R. and J.C. Eccles: The self and its brain. Springer-Verlag, Berlin, Heidelberg, New York (1977).

    Google Scholar 

  29. Prince, D.A., H.D. Lux and E. Neher: Measurements of extracellular potassium activity in cat cortex. Brain Res. 50, 489–493 (1973).

    Article  PubMed  CAS  Google Scholar 

  30. Purpura, D.: Interneuronal mechanisms in thalamically induced synchronizing and desynchronizing activity. pp. 467–496. In: M.A.B. Brazier (Edit.): The Interneuron. Univ. of Calif. Press, Los Angeles (1969).

    Google Scholar 

  31. Regan, D., B.A. Milner and J.R. Heron: Delayed visual reception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobular neuritis. Brain 99, 43–66 (1976).

    Article  PubMed  CAS  Google Scholar 

  32. Rougeul-Buser, A., J.J. Bouyer and P. Buser: From attentiveness to sleep. A topographical analysis of localized “synchronized” activites on the cortex of normal cat and monkey. Act. Neurobiol. Experim. 35, 805–819(1975).

    CAS  Google Scholar 

  33. Scheibel, M.E. and A.B. Scheibel: Some structural and functional substrates of development in young cats. Progr. in Brain Res. 9, 6–25 (1964).

    Article  Google Scholar 

  34. Schulte, F.J. and E.F. Bell: Bioelectric brain development. An Atlas of EEG power spectra in infants and young children. Neuropädiatrie 4, 30–45 (1973).

    Article  PubMed  CAS  Google Scholar 

  35. Singer, W. and U. Dräger: Postsynaptic potentials in relay neurons of cat lateral geniculate nucleus after stimulation of the mesencephalic reticular formation. Brain Res. 41, 214–220 (1972).

    Article  PubMed  CAS  Google Scholar 

  36. Speckmann, E.J., H. Caspers and R.W. Janzen: Relations between cortical DC-shifts and membrane potential changes of cortical neurons associated with seizure activity. In: H. Petsche and M.A.B. Brazier (Edit.): Mechanisms of synchronisation on epileptic seizures. Springer-Verlag, Wien, Heidelberg (1972).

    Google Scholar 

  37. Suzuki, H. and S. Ochs: Laminar stimulation for direct cortical responses from intact and chronically isolated cortex. Electroenceph. Clin. Neurophysiol. 17, 405–413 (1964).

    Article  PubMed  CAS  Google Scholar 

  38. Vaughan, H.G., E.G. Gross and W. Ritter: Topography of the human motor potential. Electroenceph. Clin. Neurophysiol. 25, 1–10 (1968).

    Article  PubMed  Google Scholar 

  39. Vogel, F.: The genetic basis of the human electroencephalogram (EEG). Humangenetik 10, 91–114(1970).

    Article  PubMed  CAS  Google Scholar 

  40. Walter, W.G.: Slow potential waves in the human brain associated with expectancy, attention and decision. Electroenceph. Clin. Neurophysiol Suppl. 26, 123–130 (1967).

    Google Scholar 

  41. Weinmann, H., O.D. Creutzfeldt and G. Heyde: Die Entwicklung der visuellen Reizantwort bei Kindern. Arch. Psychiatr. Nervenkr. 207, 323–341 (1965).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creutzfeldt, O.D. (1983). Spontane und evozierte elektrische Potentiale der Hirnrinde und deren neuronalen Grundlagen. In: Cortex Cerebri. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68962-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68962-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68963-5

  • Online ISBN: 978-3-642-68962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics