Skip to main content

Properties of Virginiamycin-like Antibiotics (Synergimycins), Inhibitors Containing Synergistic Components

  • Chapter

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 6))

Abstract

Antibiotics inhibiting protein synthesis in prokaryotes can be divided into three groups, according to their targets: (1) 30S ribosomal subunits, (2) 50S subunits; and (3) cytoplasmic factors (the initiation factors IF1, 2 and 3; the elongation factors EF-Tu, EF-Ts and EF-G; and the termination factors RF-1, 2 and 3) (Table 1). Virginiamycin-like antibiotics (synergimycins) belong to the second group. The articles of Weisblum and Davies (1968), Vázquez (1974), Pongs et al. (1974), and Pestka (1971,1976,1977), and the volumes of Vázquez (1979) and of Gale et al. (1981) review literature data on antibiotics acting at the ribosome level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen NE (1977a) Macrolide resistance in Staphylococcus aureus: induction of macrolide — resistant protein synthesis. Antimicrob Agents Chemother 11: 661–668

    PubMed  CAS  Google Scholar 

  • Allen NE (1977b) Macrolide resistance in Staphylococcus aureus: inducers of macrolide — resistance. Antimicrob Agents Chemother 11: 669–674

    PubMed  CAS  Google Scholar 

  • Anteunis MJ, Callens RE, Tavernier DK (1975) Solution conformation of virgmiamycins. Eur J Biochem 58: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Behnke D, Golubkov VI, Malke H, Boitsov AS, Totolian AA (1979) Restriction endonuclease analysis of group A streptococcal plasmids determining resistance to macrolides, lincosamides and streptogramin-B antibiotics. FEMS Microbiol Lett 6: 5–9

    Article  CAS  Google Scholar 

  • Boitsov AS, Golubkov VI, Iontova IM, Zaitsev EN, Malke H, Totolian AA (1979) Inverted repeats on plasmids determining resistance to MLS antibiotics in group A Streptococci. FEMS Microbiol Lett 6: 11–14

    Article  CAS  Google Scholar 

  • Bycroft BW (1977) Configurational and conformational species on the group A peptide antibiotics of the mikamycin (streptogramin, virginiamycin) family. J Chem Soc 1: 2464–2470

    Google Scholar 

  • Callens REA, Anteunis MJO ( 1979 a) Solution conformation of virginiamycin S. II. The conformation of allohydroxy- and deoxyvirginiamycin S. Biochim Biophys Acta 577: 324–336

    Google Scholar 

  • Callens REA, Anteunis MJO (1979b) Solution conformation of virginiamycins. III. Patricin A: a further model for cooperative effects of the pro ring conformation and backbone. Biochim Biophys Acta 577: 337

    PubMed  CAS  Google Scholar 

  • Celma ML, Monro RE, Vazquez D (1970) Substrate and antibiotic binding sites at the peptidyl transferase centre of Escherichia coli ribosomes. FEBS Lett 6: 273–277

    Article  PubMed  CAS  Google Scholar 

  • Celma ML, Monro RE, Vazquez D (1971) Substrate and antibiotic binding sites at the peptidyl transferase centre of Escherichia coli ribosomes: binding of UACCA-Leu to 50S subunits. FEBS Lett 13: 247–251

    Article  PubMed  CAS  Google Scholar 

  • Chabbert YA, Courvalin P (1971) Synergie des composants des antibiotiques du groupe de la streptogramine. Pathol Biol 19: 613–619

    PubMed  CAS  Google Scholar 

  • Chinali G, Wolf H, Parmeggiani A (1977) Effect of kirromycin on elongation factor Tu. Eur J Biochem 75: 55–65

    Article  PubMed  CAS  Google Scholar 

  • Chinali G, Moureau Ph, Cocito C (1981) The mechanism of action of virginiamycin M on the binding of aminoacyl-tRNA to ribosomes directed by elongation factor Tu. Eur J Biochem 118: 577–583

    Article  PubMed  CAS  Google Scholar 

  • Cocito C (1969 a) Metabolism of macromolecules in bacteria treated with virginiamycin. J Gen Microbiol 57:179–194

    Google Scholar 

  • Cocito C (1969b) The action of virginiamycin on nucleic acids and protein synthesis in B. subtilis infected with bacteriophage 2C. J Gen Microbiol 57: 195–206

    PubMed  CAS  Google Scholar 

  • Cocito C (1971) Formation and decay of polyribosomes and ribosomes during the inhibition of protein synthesis and recovery. Bioehimie 53: 987–1000

    Article  CAS  Google Scholar 

  • Cocito C (1973 a) Formation of ribosomal particles in virginiamycin sensitive and resistant mutants of B. subtilis. Bioehimie 55:153–161

    Google Scholar 

  • Cocito C (1973 b) The ribosomal cycle in bacteria treated with an inhibitor of protein synthesis. Bioehimie 55:309–316

    Google Scholar 

  • Cocito C (1974) Origin and metabolic properties of the RNA species formed during the replication cycle of virus 2C. J Virol 14: 1482–1493

    PubMed  CAS  Google Scholar 

  • Cocito C (1978) Pressure dissociation of bacterial ribosomes and reassociation of ribosomal subunits. Mol Gen Genet 162: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Cocito C (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergistic compo¬nents. Microbiol Rev 43: 145–198

    PubMed  CAS  Google Scholar 

  • Cocito C, Di Giambattista M (1978) In vitro binding of virginiamycin M to bacterial ribosomes and ribosomal subunits. Mol Gen Genet 166: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Cocito C, Fraselle G (1973) The properties of virginiamycin-resistant mutants of B. subtilis. J Gen Microbiol 76: 115–125

    PubMed  CAS  Google Scholar 

  • Cocito C, Goldstein D (1977) Inhibition of lytic induction in lysogenic cyanophyces. J Virol 23: 483–491

    PubMed  CAS  Google Scholar 

  • Cocito C, Kaji A (1971) Virginiamycin M — A specific inhibitor of the acceptor site of ribosomes. Bioehimie 53: 763–770

    Article  CAS  Google Scholar 

  • Cocito C, Shilo M (1974) Macromolecule metabolism and photosynthetic functions in blue-green algae treated with virginiamycin, an inhibitor of protein synthesis. Antimicrob Agents Chemother 6: 136–143

    PubMed  CAS  Google Scholar 

  • Cocito C, Vanlinden F (1978) Polysomes and ribosome metabolism in virus 2C multiplication. Bioehimie 60: 399–402

    Article  CAS  Google Scholar 

  • Cocito C, Bronchart R, Van Pel B (1972) Phenotypic and genotypic changes induced in eucaryotic cells by protein inhibitors. Biochem Biophys Res Commun 46: 1688–1694

    Article  PubMed  CAS  Google Scholar 

  • Cocito C, Voorma H, Bosch L (1974) Interference of virginiamycin M with the initiation and the elongation of peptide chains in cell-free systems. Biochim Biophys Acta 340: 285–298

    PubMed  CAS  Google Scholar 

  • Cocito C, Tiboni O., Vanlinden F, Ciferri O (1979) Inhibition of protein synthesis in chloroplasts from plant cells by virginiamycin. Z Naturforsch [C] 34: 1195–1198

    CAS  Google Scholar 

  • Compernolle F, Vanderhaeghe H, Janssen G (1972) Mass spectra of staphylomycin S components and of related cyclodepsipeptide antibiotics. Org Mass Spectrom 6: 161–166

    Article  Google Scholar 

  • Contreras A, Vazquez D (1977) Synergistic interaction of the streptogramins with the ribosomes. Eur J Biochem 74: 549–551

    Article  PubMed  CAS  Google Scholar 

  • Crooy P, De Neys R (1972) Virginiamycin: nomenclature. J Antibiot 25: 371–372

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1969) Antibiotics and polyribosomes. II. Some effect of lincomycin, spiramycin and streptogramin A in vivo. Biochemistry 8: 1063–2066

    Article  Google Scholar 

  • de Béthune MP, Nierhaus KH (1978) Characterization of the binding of virginiamycin S to E. coli ribosomes. Eur J Biochem 86: 187–191

    Google Scholar 

  • Declercq JP, Piret P, Van Meerssche M (1971) Paramètres et groupe spatial de dérivés de la staphylo-mycine. Acta Cryst 27: 1276

    Article  CAS  Google Scholar 

  • Declercq JP, Germain G, Van Meerssche M, Hull SE, Irwin MJ (1978) Structure cristalline et moléculaire du facteur S de la virginiamycine. Acta Cryst E34: 3644–3648

    Article  Google Scholar 

  • De Meester C, Rondelet J (1976) Microbial acetylation of M factor of virginiamycin. J Antibiot 29: 1297–1305

    PubMed  Google Scholar 

  • Durant F, Evrard G, Declercq JP, Germain G (1974) Virginiamycin: factor M-dioxane. Cryst Struct Commun 3: 503–510

    CAS  Google Scholar 

  • Ebringer L (1972) Are plasmids derived from prokaryotic microorganisms Action of antibiotics on chloroplasts of Euglena gracilis. J Gen Microbiol 71: 35–52

    PubMed  CAS  Google Scholar 

  • Eksztejn M, Varon M (1977) Elongation and cell division in Bdellovibrio bacteriovirus. Arch Micro¬biol 114: 175–181

    Article  CAS  Google Scholar 

  • El Solh N, Fouage JM, Shalita Z, Bouanchaud DH, Novick RP, Chabbert YA (1980) Epidemiological and structural studies of Staphylococcus aureus R plasmids mediating resistance to tobramycin and streptogramin. Plasmid 4: 117–120

    Article  PubMed  Google Scholar 

  • Ennis HL (1965 a) Inhibition of protein synthesis by polypeptide antibiotics. I. Inhibition in intact bacteria. J Bacteriol 90: 1102–1109

    Google Scholar 

  • Ennis HL (1965 b) Inhibition of protein synthesis by polypeptide antibiotics. II. In vitro protein synthesis. J Bacteriol 90:1109–1119

    Google Scholar 

  • Ennis HL (1966) Inhibition of protein synthesis by polypeptide antibiotics. III. Ribosomal site of inhibition. Mol Pharmacol 2: 444–453

    PubMed  CAS  Google Scholar 

  • Ennis HL (1971 a) Interaction of vernamycin A with E. coli ribosomes. Biochemistry 10:1265–1270

    Google Scholar 

  • Ennis HL (1971b) Mutants of E. coli sensitive to antibiotics. J Bacteriol 107: 486–490

    CAS  Google Scholar 

  • Ennis HL (1972) Polysome metabolism in E. coli: effect of antibiotics on polysome stability.Antimicrob Agents Chemother 1: 197–203

    CAS  Google Scholar 

  • Ennis HL (1974) Binding of the antibiotic vernamycin B to E. coli ribosomes. Arch Biochem Biophys 160: 394–401

    Article  CAS  Google Scholar 

  • Ennis HL, Duffy KE (1972) Vernamycin A inhibits the non enzymatic binding of fMet-tRNA to ribosomes. Biochim Biophys Acta 281: 93–102

    PubMed  CAS  Google Scholar 

  • Fusijawa Y, Weissblum B (1981) A family of r-determinants in Streptomyces spp. that specifies inducible resistant to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 146: 621–631

    Google Scholar 

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The molecular basis of

    Google Scholar 

  • antibiotic action, 2nd edn, 646 p. Wiley, London New York Syndney Toronto

    Google Scholar 

  • Hoet P, Coene M, Cocito C (1981) Action of inhibitors of macromolecule formation on duplication of B. subtilis phage 2C-DNA. Biochem Pharmacol 30: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Hook DJ, Vining LC (1973 a) Biosynthesis of the peptide antibiotic etamycin. Origin of the 3-hydroxy- picolinyl and amino-acid fractions. J Chem Soc Chem Commun 5: 185–186

    Google Scholar 

  • Hook DJ, Vining LC (1973 b) Biosynthetic precursors of etamycin, a peptidolactone antibiotic from Streptomyces griseoviridis. Can J Biochem 51: 1630–1637

    Google Scholar 

  • Horinouchi S, Weisblum B (1980) Posttranscriptional modification of mRNA conformation; mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA 77: 7079–7083

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Weisblum B (1981) The control region for erythromycin resistance: free energy changes related to induction and mutation to constitutive expression. Mol Gen Genet 182: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Hou CT, Perlman D, Schallock MR (1970) Microbial transformation of peptide antibiotics VI. Purification and properties of a peptide lactonase hydrolyzing dihydrostaphylomycin S. J Antibiot 23: 35–42

    Google Scholar 

  • Janssen G, Anne J, Vanderhaeghe H (1977) Preparation and properties of derivatives of virginiamycin S.J Antibiot 30: 141–145

    CAS  Google Scholar 

  • Kamal F, Katz E (1976) Studies of etamycin biosynthesis employing short-term experiments with radiolabeled precursors. J Antibiot 29: 944–949

    PubMed  CAS  Google Scholar 

  • Kim CH, Otake N, Yonehara Y (1974) Studies on mikamycin B. lactonase degradation of mikamycin B by Streptomycin mitakaensis. J Antibiot 27: 903–908

    PubMed  CAS  Google Scholar 

  • Kingston DGI, Kolpak M (1980) Biosynthesis of antibiotics of the virginiamycin family. 1. Biosynthesis of virginiamycin Mt: determination of the labeling pattern by the use of stable isotope techniques. J Am Chem Soc 102: 5964–5966

    Article  CAS  Google Scholar 

  • Lai CJ, Weisblum B (1971) Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci USA 68: 856–860

    Article  PubMed  CAS  Google Scholar 

  • Lai CJ, Dahlberg JE, Weisblum B (1973) Structure of an inducibly methylatable nucleotide sequence in 23 S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. Biochemistry 12: 457

    Article  PubMed  CAS  Google Scholar 

  • Laskin AI, Chan WM (1965) Inhibition by vernamycin A of amino acid incorporation in Escherichia coli cell-free systems. Antimicrob Agents Chemother: 485–488

    Google Scholar 

  • Le Goffic F, Capmau ML, Abbe J, Cerceau C, Dublanchet A, Duval J (1977 a) Plasmid mediated pristinamycin resistance PH 1A a pristinamycin 1A hydrolase. Ann Microbiol 128: 471–474

    Google Scholar 

  • Le Goffic F, Capmau ML, Bonnet D, Cereau C, Soussy C, Dublanchet A, Duval J (977 b) Plasmid- mediated pristinamycin resistance. PAC II A:a new enzyme which modifies pristinamycin II. J Antibiot 30: 665–669

    Google Scholar 

  • Le Goffic F, Moreau N, Langrené S, Pasquier A (1980) Binding of antibiotics to the bacterial ribosome studied by aqueous twophase partitioning. Anal Biochem 107: 417–423

    Article  PubMed  Google Scholar 

  • Le Goffic F, Capmau ML, Abbe A, Charles L, Montastier J (1981) Transformations chimiques de la pristinamycine II en vue de l’étude de son mécanisme d’action. Eur J Med Chem Chim Ther 16: 69–72

    Google Scholar 

  • Malke H (1979) Conjugal transfer of plasmids determining resistance to macrolides, lincosamides and streptogramin - B type antibiotics among group A, B, D and H streptococci. FEMS Microbiol Lett 5: 335–338

    Article  CAS  Google Scholar 

  • Meyers AI, Amos RA (1980) Studies directed towards the total synthesis of streptogramin antibiotics. Enantiospecific approach to the nine-membered macrocycle of griseoviridin. J Am Chem Soc 102: 870

    Google Scholar 

  • Monro RE, Vazquez D (1967) Ribosome-catalyzed peptidyl transfer. Effects of some inhibitors of protein synthesis. J Mol Biol 28: 161–165

    Google Scholar 

  • Nomura M, Held WA (1974) Reconstitution of ribosomes: studies of ribosome structure, function and assembly. In: Nomura M, Tissières A, Lengyel P (eds) Nomura M, Held WA, pp 193–225. Cold Spring Harbor

    Google Scholar 

  • Ondetti M, Thomas PL (1965) Synthesis of a peptide lactone related to vernamycin B. J Am Chem Soc 87: 4373–4380

    Article  PubMed  CAS  Google Scholar 

  • Parfait R, Cocito C (1980) Lasting damage to bacterial ribosomes by reversibly-bound virginiamycin M. Proc Natl Acad Sci USA 77: 6492–6496

    Article  Google Scholar 

  • Parfait R, de Béthune MP, Cocito C (1978) A spectrofluorimetric study of the interaction between virginiamycin S and bacterial ribosomes. Mol Gen Genet 166: 45–51

    CAS  Google Scholar 

  • Parfait R, Di Giambattista M, Cocito C (1981) Competition between erythromycin and virginiamycin for in vitro binding to the large ribosomal subunit. Biochim Biophys Acta 654: 236–241

    PubMed  CAS  Google Scholar 

  • Pestka S (1970) Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effect of antibiotics on N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch Biochem Biophys 136: 80–88

    Article  PubMed  CAS  Google Scholar 

  • Pestka S (1971) Inhibitors of ribosome functions. Annu Rev Biochem 40: 697–710

    Article  Google Scholar 

  • Pestka S (1972) Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosomes from Escherichia coli. J Biol Chem 247: 4660–4678

    Google Scholar 

  • Pestka S (1974) Antibiotics as probes of ribosomes structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicrob Agents Chemother 5: 255–267

    PubMed  CAS  Google Scholar 

  • Pestka S (1976) Insights into protein biosynthesis and ribosome function through inhibitors. Prog Nucleic Acid Res Mol Biol 17: 217–245

    Article  PubMed  CAS  Google Scholar 

  • Pestka A (1977) Inhibitors of protein synthesis. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis, pp 468 - 536. Academic Press, London New York

    Google Scholar 

  • Pongs O, Nierhaus KH, Erdmann VA, Wittmann HG (1974) Active sites in Escherichia coli ribosomes. FEBS Lett [SuppL] 40: 28–37

    Google Scholar 

  • Ron EZ, de Bethune MP, Cocito CG (1980) Mapping of virginiamycin S resistance in Bacillus subtilis. Mol Gen Genet 180: 639–640

    CAS  Google Scholar 

  • Sheehan JC, Ledis SL (1973) Total synthesis of a monocyclic peptide lactone antibiotic, etamycin. J Am Chem Soc 95: 875–879

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N (1975) Mikamycin. In: Corcoran JN, Hahn FE (eds) Antibiotics, Vol I II. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vanderhaeghe J, Janssen G, Compernolle F (1972) Bereiding van radioactieve dihydrovirginiamycine S en karakterisering van virginiamycine S componenten. Verh K Acad Geneeskd Belg 34: 209–231

    CAS  Google Scholar 

  • Van Pel B, Cocito C (1973) Formation of chloroplast ribosomes and ribosomal RNA in Euglena gracilis incubated with protein inhibitors. Exp Cell Res 78: 111–118

    Article  PubMed  Google Scholar 

  • Van Pel B, Bronchart R, Kebers F, Cocito C (1973) Structure and function of cytoplasmic organelles in transiently- and permanently-bleached Euglena. Exp Cell Res 78: 103–111

    Article  PubMed  Google Scholar 

  • Varón M, Cocito C, Seijffers J (1976 b) Effect of virginiamycin on the growth cycle of Bdellovibrio. Antimicrob Agents Chemother 9: 179–188

    Google Scholar 

  • Vázquez D (1966 a) Studies on the mode of action of the streptogramin antibiotics. J Gen Microbiol 42:84-93

    Google Scholar 

  • Vázquez D (1966b) Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim Biophys Acta 114: 277–288

    PubMed  Google Scholar 

  • Vázquez D (1967) The streptogramin family of antibiotics. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol I,pp 387–403. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vázquez D (1974) Inhibitors of protein synthesis. FEBS Lett 40: S63–S84

    Article  PubMed  Google Scholar 

  • Vázquez D (1975) The streptogramin family of antibiotics. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol III, pp 521–534. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vázquez D (1979) Inhibitors of protein synthesis. Molecular biology biochemistry and biophysics, Vol 30, 312 p. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weisblum B, Davies J (1968) Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev 32: 493–528

    PubMed  CAS  Google Scholar 

  • Weisblum B, Demohn V (1969) Erythromycin-inducible resistance in Staphylococcus aureus: survey of antibiotic classes involved J Bacteriol 98: 447–452

    CAS  Google Scholar 

  • Weisblum B, Siddhikol C, Lai CJ, Demohn C (1971) Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J Bacteriol 106: 835–847

    PubMed  CAS  Google Scholar 

  • Weisblum B, Graham MY, Gryczan T, Dubnau D (1979) Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194. J Bacteriol 137: 635–543

    PubMed  CAS  Google Scholar 

  • Wolf H, Chinali G, Parmeggiani A (1974) Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci 71: 4910–4914

    Article  PubMed  CAS  Google Scholar 

  • Wolf H, Chinali G, Parmeggiani A (1977) Mechanisms of the inhibition of protein synthesis by kirromycin. Eur J Biochem 75: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Yagi Y, McLellan TS, Frez WA, Clewell DB (1978) Characterization of a small plasmid determining resistance to erythromycin, lincomycin and vernamycin B in a strain of Streptococcus sanguis isolated from dental plaque. Antimicrob Agents Chemother 13: 884–887

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Cocito, C. (1983). Properties of Virginiamycin-like Antibiotics (Synergimycins), Inhibitors Containing Synergistic Components. In: Hahn, F.E. (eds) Modes and Mechanisms of Microbial Growth Inhibitors. Antibiotics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68946-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68946-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68948-2

  • Online ISBN: 978-3-642-68946-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics