Properties of Virginiamycin-like Antibiotics (Synergimycins), Inhibitors Containing Synergistic Components

  • C. Cocito
Part of the Antibiotics book series (ANTIBIOTICS, volume 6)


Antibiotics inhibiting protein synthesis in prokaryotes can be divided into three groups, according to their targets: (1) 30S ribosomal subunits, (2) 50S subunits; and (3) cytoplasmic factors (the initiation factors IF1, 2 and 3; the elongation factors EF-Tu, EF-Ts and EF-G; and the termination factors RF-1, 2 and 3) (Table 1). Virginiamycin-like antibiotics (synergimycins) belong to the second group. The articles of Weisblum and Davies (1968), Vázquez (1974), Pongs et al. (1974), and Pestka (1971,1976,1977), and the volumes of Vázquez (1979) and of Gale et al. (1981) review literature data on antibiotics acting at the ribosome level.


Antimicrob Agent Ribosomal Subunit Initiation Complex Pipecolic Acid Peptidyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen NE (1977a) Macrolide resistance in Staphylococcus aureus: induction of macrolide — resistant protein synthesis. Antimicrob Agents Chemother 11: 661–668PubMedGoogle Scholar
  2. Allen NE (1977b) Macrolide resistance in Staphylococcus aureus: inducers of macrolide — resistance. Antimicrob Agents Chemother 11: 669–674PubMedGoogle Scholar
  3. Anteunis MJ, Callens RE, Tavernier DK (1975) Solution conformation of virgmiamycins. Eur J Biochem 58: 259–268PubMedCrossRefGoogle Scholar
  4. Behnke D, Golubkov VI, Malke H, Boitsov AS, Totolian AA (1979) Restriction endonuclease analysis of group A streptococcal plasmids determining resistance to macrolides, lincosamides and streptogramin-B antibiotics. FEMS Microbiol Lett 6: 5–9CrossRefGoogle Scholar
  5. Boitsov AS, Golubkov VI, Iontova IM, Zaitsev EN, Malke H, Totolian AA (1979) Inverted repeats on plasmids determining resistance to MLS antibiotics in group A Streptococci. FEMS Microbiol Lett 6: 11–14CrossRefGoogle Scholar
  6. Bycroft BW (1977) Configurational and conformational species on the group A peptide antibiotics of the mikamycin (streptogramin, virginiamycin) family. J Chem Soc 1: 2464–2470Google Scholar
  7. Callens REA, Anteunis MJO ( 1979 a) Solution conformation of virginiamycin S. II. The conformation of allohydroxy- and deoxyvirginiamycin S. Biochim Biophys Acta 577: 324–336Google Scholar
  8. Callens REA, Anteunis MJO (1979b) Solution conformation of virginiamycins. III. Patricin A: a further model for cooperative effects of the pro ring conformation and backbone. Biochim Biophys Acta 577: 337PubMedGoogle Scholar
  9. Celma ML, Monro RE, Vazquez D (1970) Substrate and antibiotic binding sites at the peptidyl transferase centre of Escherichia coli ribosomes. FEBS Lett 6: 273–277PubMedCrossRefGoogle Scholar
  10. Celma ML, Monro RE, Vazquez D (1971) Substrate and antibiotic binding sites at the peptidyl transferase centre of Escherichia coli ribosomes: binding of UACCA-Leu to 50S subunits. FEBS Lett 13: 247–251PubMedCrossRefGoogle Scholar
  11. Chabbert YA, Courvalin P (1971) Synergie des composants des antibiotiques du groupe de la streptogramine. Pathol Biol 19: 613–619PubMedGoogle Scholar
  12. Chinali G, Wolf H, Parmeggiani A (1977) Effect of kirromycin on elongation factor Tu. Eur J Biochem 75: 55–65PubMedCrossRefGoogle Scholar
  13. Chinali G, Moureau Ph, Cocito C (1981) The mechanism of action of virginiamycin M on the binding of aminoacyl-tRNA to ribosomes directed by elongation factor Tu. Eur J Biochem 118: 577–583PubMedCrossRefGoogle Scholar
  14. Cocito C (1969 a) Metabolism of macromolecules in bacteria treated with virginiamycin. J Gen Microbiol 57:179–194Google Scholar
  15. Cocito C (1969b) The action of virginiamycin on nucleic acids and protein synthesis in B. subtilis infected with bacteriophage 2C. J Gen Microbiol 57: 195–206PubMedGoogle Scholar
  16. Cocito C (1971) Formation and decay of polyribosomes and ribosomes during the inhibition of protein synthesis and recovery. Bioehimie 53: 987–1000CrossRefGoogle Scholar
  17. Cocito C (1973 a) Formation of ribosomal particles in virginiamycin sensitive and resistant mutants of B. subtilis. Bioehimie 55:153–161Google Scholar
  18. Cocito C (1973 b) The ribosomal cycle in bacteria treated with an inhibitor of protein synthesis. Bioehimie 55:309–316Google Scholar
  19. Cocito C (1974) Origin and metabolic properties of the RNA species formed during the replication cycle of virus 2C. J Virol 14: 1482–1493PubMedGoogle Scholar
  20. Cocito C (1978) Pressure dissociation of bacterial ribosomes and reassociation of ribosomal subunits. Mol Gen Genet 162: 43–50PubMedCrossRefGoogle Scholar
  21. Cocito C (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergistic compo¬nents. Microbiol Rev 43: 145–198PubMedGoogle Scholar
  22. Cocito C, Di Giambattista M (1978) In vitro binding of virginiamycin M to bacterial ribosomes and ribosomal subunits. Mol Gen Genet 166: 53–59PubMedCrossRefGoogle Scholar
  23. Cocito C, Fraselle G (1973) The properties of virginiamycin-resistant mutants of B. subtilis. J Gen Microbiol 76: 115–125PubMedGoogle Scholar
  24. Cocito C, Goldstein D (1977) Inhibition of lytic induction in lysogenic cyanophyces. J Virol 23: 483–491PubMedGoogle Scholar
  25. Cocito C, Kaji A (1971) Virginiamycin M — A specific inhibitor of the acceptor site of ribosomes. Bioehimie 53: 763–770CrossRefGoogle Scholar
  26. Cocito C, Shilo M (1974) Macromolecule metabolism and photosynthetic functions in blue-green algae treated with virginiamycin, an inhibitor of protein synthesis. Antimicrob Agents Chemother 6: 136–143PubMedGoogle Scholar
  27. Cocito C, Vanlinden F (1978) Polysomes and ribosome metabolism in virus 2C multiplication. Bioehimie 60: 399–402CrossRefGoogle Scholar
  28. Cocito C, Bronchart R, Van Pel B (1972) Phenotypic and genotypic changes induced in eucaryotic cells by protein inhibitors. Biochem Biophys Res Commun 46: 1688–1694PubMedCrossRefGoogle Scholar
  29. Cocito C, Voorma H, Bosch L (1974) Interference of virginiamycin M with the initiation and the elongation of peptide chains in cell-free systems. Biochim Biophys Acta 340: 285–298PubMedGoogle Scholar
  30. Cocito C, Tiboni O., Vanlinden F, Ciferri O (1979) Inhibition of protein synthesis in chloroplasts from plant cells by virginiamycin. Z Naturforsch [C] 34: 1195–1198Google Scholar
  31. Compernolle F, Vanderhaeghe H, Janssen G (1972) Mass spectra of staphylomycin S components and of related cyclodepsipeptide antibiotics. Org Mass Spectrom 6: 161–166CrossRefGoogle Scholar
  32. Contreras A, Vazquez D (1977) Synergistic interaction of the streptogramins with the ribosomes. Eur J Biochem 74: 549–551PubMedCrossRefGoogle Scholar
  33. Crooy P, De Neys R (1972) Virginiamycin: nomenclature. J Antibiot 25: 371–372PubMedGoogle Scholar
  34. Cundliffe E (1969) Antibiotics and polyribosomes. II. Some effect of lincomycin, spiramycin and streptogramin A in vivo. Biochemistry 8: 1063–2066CrossRefGoogle Scholar
  35. de Béthune MP, Nierhaus KH (1978) Characterization of the binding of virginiamycin S to E. coli ribosomes. Eur J Biochem 86: 187–191Google Scholar
  36. Declercq JP, Piret P, Van Meerssche M (1971) Paramètres et groupe spatial de dérivés de la staphylo-mycine. Acta Cryst 27: 1276CrossRefGoogle Scholar
  37. Declercq JP, Germain G, Van Meerssche M, Hull SE, Irwin MJ (1978) Structure cristalline et moléculaire du facteur S de la virginiamycine. Acta Cryst E34: 3644–3648CrossRefGoogle Scholar
  38. De Meester C, Rondelet J (1976) Microbial acetylation of M factor of virginiamycin. J Antibiot 29: 1297–1305PubMedGoogle Scholar
  39. Durant F, Evrard G, Declercq JP, Germain G (1974) Virginiamycin: factor M-dioxane. Cryst Struct Commun 3: 503–510Google Scholar
  40. Ebringer L (1972) Are plasmids derived from prokaryotic microorganisms Action of antibiotics on chloroplasts of Euglena gracilis. J Gen Microbiol 71: 35–52PubMedGoogle Scholar
  41. Eksztejn M, Varon M (1977) Elongation and cell division in Bdellovibrio bacteriovirus. Arch Micro¬biol 114: 175–181CrossRefGoogle Scholar
  42. El Solh N, Fouage JM, Shalita Z, Bouanchaud DH, Novick RP, Chabbert YA (1980) Epidemiological and structural studies of Staphylococcus aureus R plasmids mediating resistance to tobramycin and streptogramin. Plasmid 4: 117–120PubMedCrossRefGoogle Scholar
  43. Ennis HL (1965 a) Inhibition of protein synthesis by polypeptide antibiotics. I. Inhibition in intact bacteria. J Bacteriol 90: 1102–1109Google Scholar
  44. Ennis HL (1965 b) Inhibition of protein synthesis by polypeptide antibiotics. II. In vitro protein synthesis. J Bacteriol 90:1109–1119Google Scholar
  45. Ennis HL (1966) Inhibition of protein synthesis by polypeptide antibiotics. III. Ribosomal site of inhibition. Mol Pharmacol 2: 444–453PubMedGoogle Scholar
  46. Ennis HL (1971 a) Interaction of vernamycin A with E. coli ribosomes. Biochemistry 10:1265–1270Google Scholar
  47. Ennis HL (1971b) Mutants of E. coli sensitive to antibiotics. J Bacteriol 107: 486–490Google Scholar
  48. Ennis HL (1972) Polysome metabolism in E. coli: effect of antibiotics on polysome stability.Antimicrob Agents Chemother 1: 197–203Google Scholar
  49. Ennis HL (1974) Binding of the antibiotic vernamycin B to E. coli ribosomes. Arch Biochem Biophys 160: 394–401CrossRefGoogle Scholar
  50. Ennis HL, Duffy KE (1972) Vernamycin A inhibits the non enzymatic binding of fMet-tRNA to ribosomes. Biochim Biophys Acta 281: 93–102PubMedGoogle Scholar
  51. Fusijawa Y, Weissblum B (1981) A family of r-determinants in Streptomyces spp. that specifies inducible resistant to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 146: 621–631Google Scholar
  52. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The molecular basis ofGoogle Scholar
  53. antibiotic action, 2nd edn, 646 p. Wiley, London New York Syndney TorontoGoogle Scholar
  54. Hoet P, Coene M, Cocito C (1981) Action of inhibitors of macromolecule formation on duplication of B. subtilis phage 2C-DNA. Biochem Pharmacol 30: 489–494PubMedCrossRefGoogle Scholar
  55. Hook DJ, Vining LC (1973 a) Biosynthesis of the peptide antibiotic etamycin. Origin of the 3-hydroxy- picolinyl and amino-acid fractions. J Chem Soc Chem Commun 5: 185–186Google Scholar
  56. Hook DJ, Vining LC (1973 b) Biosynthetic precursors of etamycin, a peptidolactone antibiotic from Streptomyces griseoviridis. Can J Biochem 51: 1630–1637Google Scholar
  57. Horinouchi S, Weisblum B (1980) Posttranscriptional modification of mRNA conformation; mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA 77: 7079–7083PubMedCrossRefGoogle Scholar
  58. Horinouchi S, Weisblum B (1981) The control region for erythromycin resistance: free energy changes related to induction and mutation to constitutive expression. Mol Gen Genet 182: 341–348PubMedCrossRefGoogle Scholar
  59. Hou CT, Perlman D, Schallock MR (1970) Microbial transformation of peptide antibiotics VI. Purification and properties of a peptide lactonase hydrolyzing dihydrostaphylomycin S. J Antibiot 23: 35–42Google Scholar
  60. Janssen G, Anne J, Vanderhaeghe H (1977) Preparation and properties of derivatives of virginiamycin S.J Antibiot 30: 141–145Google Scholar
  61. Kamal F, Katz E (1976) Studies of etamycin biosynthesis employing short-term experiments with radiolabeled precursors. J Antibiot 29: 944–949PubMedGoogle Scholar
  62. Kim CH, Otake N, Yonehara Y (1974) Studies on mikamycin B. lactonase degradation of mikamycin B by Streptomycin mitakaensis. J Antibiot 27: 903–908PubMedGoogle Scholar
  63. Kingston DGI, Kolpak M (1980) Biosynthesis of antibiotics of the virginiamycin family. 1. Biosynthesis of virginiamycin Mt: determination of the labeling pattern by the use of stable isotope techniques. J Am Chem Soc 102: 5964–5966CrossRefGoogle Scholar
  64. Lai CJ, Weisblum B (1971) Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci USA 68: 856–860PubMedCrossRefGoogle Scholar
  65. Lai CJ, Dahlberg JE, Weisblum B (1973) Structure of an inducibly methylatable nucleotide sequence in 23 S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. Biochemistry 12: 457PubMedCrossRefGoogle Scholar
  66. Laskin AI, Chan WM (1965) Inhibition by vernamycin A of amino acid incorporation in Escherichia coli cell-free systems. Antimicrob Agents Chemother: 485–488Google Scholar
  67. Le Goffic F, Capmau ML, Abbe J, Cerceau C, Dublanchet A, Duval J (1977 a) Plasmid mediated pristinamycin resistance PH 1A a pristinamycin 1A hydrolase. Ann Microbiol 128: 471–474Google Scholar
  68. Le Goffic F, Capmau ML, Bonnet D, Cereau C, Soussy C, Dublanchet A, Duval J (977 b) Plasmid- mediated pristinamycin resistance. PAC II A:a new enzyme which modifies pristinamycin II. J Antibiot 30: 665–669Google Scholar
  69. Le Goffic F, Moreau N, Langrené S, Pasquier A (1980) Binding of antibiotics to the bacterial ribosome studied by aqueous twophase partitioning. Anal Biochem 107: 417–423PubMedCrossRefGoogle Scholar
  70. Le Goffic F, Capmau ML, Abbe A, Charles L, Montastier J (1981) Transformations chimiques de la pristinamycine II en vue de l’étude de son mécanisme d’action. Eur J Med Chem Chim Ther 16: 69–72Google Scholar
  71. Malke H (1979) Conjugal transfer of plasmids determining resistance to macrolides, lincosamides and streptogramin - B type antibiotics among group A, B, D and H streptococci. FEMS Microbiol Lett 5: 335–338CrossRefGoogle Scholar
  72. Meyers AI, Amos RA (1980) Studies directed towards the total synthesis of streptogramin antibiotics. Enantiospecific approach to the nine-membered macrocycle of griseoviridin. J Am Chem Soc 102: 870Google Scholar
  73. Monro RE, Vazquez D (1967) Ribosome-catalyzed peptidyl transfer. Effects of some inhibitors of protein synthesis. J Mol Biol 28: 161–165Google Scholar
  74. Nomura M, Held WA (1974) Reconstitution of ribosomes: studies of ribosome structure, function and assembly. In: Nomura M, Tissières A, Lengyel P (eds) Nomura M, Held WA, pp 193–225. Cold Spring HarborGoogle Scholar
  75. Ondetti M, Thomas PL (1965) Synthesis of a peptide lactone related to vernamycin B. J Am Chem Soc 87: 4373–4380PubMedCrossRefGoogle Scholar
  76. Parfait R, Cocito C (1980) Lasting damage to bacterial ribosomes by reversibly-bound virginiamycin M. Proc Natl Acad Sci USA 77: 6492–6496CrossRefGoogle Scholar
  77. Parfait R, de Béthune MP, Cocito C (1978) A spectrofluorimetric study of the interaction between virginiamycin S and bacterial ribosomes. Mol Gen Genet 166: 45–51Google Scholar
  78. Parfait R, Di Giambattista M, Cocito C (1981) Competition between erythromycin and virginiamycin for in vitro binding to the large ribosomal subunit. Biochim Biophys Acta 654: 236–241PubMedGoogle Scholar
  79. Pestka S (1970) Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effect of antibiotics on N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch Biochem Biophys 136: 80–88PubMedCrossRefGoogle Scholar
  80. Pestka S (1971) Inhibitors of ribosome functions. Annu Rev Biochem 40: 697–710CrossRefGoogle Scholar
  81. Pestka S (1972) Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosomes from Escherichia coli. J Biol Chem 247: 4660–4678Google Scholar
  82. Pestka S (1974) Antibiotics as probes of ribosomes structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicrob Agents Chemother 5: 255–267PubMedGoogle Scholar
  83. Pestka S (1976) Insights into protein biosynthesis and ribosome function through inhibitors. Prog Nucleic Acid Res Mol Biol 17: 217–245PubMedCrossRefGoogle Scholar
  84. Pestka A (1977) Inhibitors of protein synthesis. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis, pp 468 - 536. Academic Press, London New YorkGoogle Scholar
  85. Pongs O, Nierhaus KH, Erdmann VA, Wittmann HG (1974) Active sites in Escherichia coli ribosomes. FEBS Lett [SuppL] 40: 28–37Google Scholar
  86. Ron EZ, de Bethune MP, Cocito CG (1980) Mapping of virginiamycin S resistance in Bacillus subtilis. Mol Gen Genet 180: 639–640Google Scholar
  87. Sheehan JC, Ledis SL (1973) Total synthesis of a monocyclic peptide lactone antibiotic, etamycin. J Am Chem Soc 95: 875–879PubMedCrossRefGoogle Scholar
  88. Tanaka N (1975) Mikamycin. In: Corcoran JN, Hahn FE (eds) Antibiotics, Vol I II. Springer, Berlin Heidelberg New YorkGoogle Scholar
  89. Vanderhaeghe J, Janssen G, Compernolle F (1972) Bereiding van radioactieve dihydrovirginiamycine S en karakterisering van virginiamycine S componenten. Verh K Acad Geneeskd Belg 34: 209–231Google Scholar
  90. Van Pel B, Cocito C (1973) Formation of chloroplast ribosomes and ribosomal RNA in Euglena gracilis incubated with protein inhibitors. Exp Cell Res 78: 111–118PubMedCrossRefGoogle Scholar
  91. Van Pel B, Bronchart R, Kebers F, Cocito C (1973) Structure and function of cytoplasmic organelles in transiently- and permanently-bleached Euglena. Exp Cell Res 78: 103–111PubMedCrossRefGoogle Scholar
  92. Varón M, Cocito C, Seijffers J (1976 b) Effect of virginiamycin on the growth cycle of Bdellovibrio. Antimicrob Agents Chemother 9: 179–188Google Scholar
  93. Vázquez D (1966 a) Studies on the mode of action of the streptogramin antibiotics. J Gen Microbiol 42:84-93Google Scholar
  94. Vázquez D (1966b) Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim Biophys Acta 114: 277–288PubMedGoogle Scholar
  95. Vázquez D (1967) The streptogramin family of antibiotics. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol I,pp 387–403. Springer, Berlin Heidelberg New YorkGoogle Scholar
  96. Vázquez D (1974) Inhibitors of protein synthesis. FEBS Lett 40: S63–S84PubMedCrossRefGoogle Scholar
  97. Vázquez D (1975) The streptogramin family of antibiotics. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol III, pp 521–534. Springer, Berlin Heidelberg New YorkGoogle Scholar
  98. Vázquez D (1979) Inhibitors of protein synthesis. Molecular biology biochemistry and biophysics, Vol 30, 312 p. Springer, Berlin Heidelberg New YorkGoogle Scholar
  99. Weisblum B, Davies J (1968) Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev 32: 493–528PubMedGoogle Scholar
  100. Weisblum B, Demohn V (1969) Erythromycin-inducible resistance in Staphylococcus aureus: survey of antibiotic classes involved J Bacteriol 98: 447–452Google Scholar
  101. Weisblum B, Siddhikol C, Lai CJ, Demohn C (1971) Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J Bacteriol 106: 835–847PubMedGoogle Scholar
  102. Weisblum B, Graham MY, Gryczan T, Dubnau D (1979) Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194. J Bacteriol 137: 635–543PubMedGoogle Scholar
  103. Wolf H, Chinali G, Parmeggiani A (1974) Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci 71: 4910–4914PubMedCrossRefGoogle Scholar
  104. Wolf H, Chinali G, Parmeggiani A (1977) Mechanisms of the inhibition of protein synthesis by kirromycin. Eur J Biochem 75: 67–75PubMedCrossRefGoogle Scholar
  105. Yagi Y, McLellan TS, Frez WA, Clewell DB (1978) Characterization of a small plasmid determining resistance to erythromycin, lincomycin and vernamycin B in a strain of Streptococcus sanguis isolated from dental plaque. Antimicrob Agents Chemother 13: 884–887PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1983

Authors and Affiliations

  • C. Cocito

There are no affiliations available

Personalised recommendations