Skip to main content

Decomposition and Mineralization Processes in Mediterranean-Type Ecosystems and in Heathlands of Similar Structure

  • Conference paper
Mediterranean-Type Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 43))

Abstract

The major resources of plant mineral nutrients in all soils exist as complex molecular aggregates from which they must be released before they become available for utilization by the vegetation. Since the rate of nutrient release often limits the primary productivity of an ecosystem, it is of fundamental importance to understand the major processes involved through decomposition and mineralization in the maintenance of nutrient cycling phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Melillo J M (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Canadian Journal of Botany 58: 416–421.

    CAS  Google Scholar 

  • Allen SE, Grimshaw M, Parkinson J, Quarmby C (1974) Chemical analysis of ecological materials. Wiley, New York, 565 pp.

    Google Scholar 

  • Anderson JM (1973) The breakdown and decomposition of sweet chestnut (Castanea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. I. Breakdown leaching and decomposition. Oecologia 12: 251–274.

    Google Scholar 

  • Ashford AE, Ling Lee M, Chilvers GA (1975) Polyphosphate in eucalypt mycorrhizas: a cytochemical demonstration. New Phytologist 74: 447–453.

    Article  CAS  Google Scholar 

  • Azcon R, Barea JM, Hayman DS (1976) Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria. Soil Biology and Biochemistry 8: 135–138.

    Article  CAS  Google Scholar 

  • Ballester A, Vieitez E, Mantilla JLG (1975) Sustansias quimicas inhibidoras del crecimiento y la germinacion presentes en Ericaceas. Anales del Instituto Botanico Aj Cavinilles 32: 235–243.

    Google Scholar 

  • Barea JM, Azcon R, Hayman DS (1975) Possible Synergistic interactions between Endogone and phosphate-solubilizing bacteria in low-phosphate soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. University of Leeds Symposium, July 1974. Academic Press, New York, pp 409–417.

    Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biology and Biochemistry 5: 249–257.

    Article  CAS  Google Scholar 

  • Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation with special reference to xeromorphy and sclerophylly. Ecology 47: 992–1007.

    Article  Google Scholar 

  • Becking JH (1959) Nitrogen-fixing bacteria of the genus Beijerinckia in South African soils. Plant and Soil 11: 193–206.

    Article  Google Scholar 

  • Benoit RE, Starkey RL (1968) Inhibition of decomposition of cellulose and some other carbohydrates by tannin. Soil Science 105: 291–296.

    Article  CAS  Google Scholar 

  • Bocock KL (1963) Changes in the amount of nitrogen in decomposing leaf litter of sessile oak (Quercus petraea). Journal of Ecology 51: 555–566.

    Article  Google Scholar 

  • Bocock KL (1964) Changes in the amounts of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna. Journal of Ecology 52: 273–284.

    Article  Google Scholar 

  • Bocock KL, Gilbert O, Capstick C, Twinn D, Ward JS, Woodman MJ (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. I. Losses in dry weight of oak and ash leaf litter. Journal of Soil Science 11: 1–9.

    Article  CAS  Google Scholar 

  • Bunnell FL, Tait DEN (1974) Mathematical simulation models of decomposition processes. In: Heal OW, Maclean SF, Flanagan PW (eds) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, pp 207–226.

    Google Scholar 

  • Burgeff H (1961) Mikrobiologie des Hochmoors. Gustav Fischer, Jena, 197 pp.

    Google Scholar 

  • Byrde RJW, Fielding AH, Williams AH (1960) The role of oxidized polyphenols in the varietal resistance of apples to brown rot. In: Pridham JB (ed) Polyphenolics in plants in health and disease. Pergamon, Oxford, pp 95–99.

    Google Scholar 

  • Chapman SB (1967) Nutrient budgets for a dry heath ecosystem in the South of England. Journal of Ecology 55: 677–689.

    Article  Google Scholar 

  • Chilvers GA, Harley JL (1980) Visualization of phosphate accumulation in beech mycorrhiza. New Phytologist 84: 319–326.

    Article  Google Scholar 

  • Coley PGF, Mitchell DT (1980) The distribution of soil fungi in Cape Erica heathland community. South African Journal of Science 76: 185.

    Google Scholar 

  • Cosgrove DJ (1967) Metabolism of organic phosphates in soil. In: Mclaren A, Peterson GH (eds) Soil biochemistry. Dekker, New York, pp 216–228.

    Google Scholar 

  • Dadd CC, Fowden L, Pearsall WH (1953) An investigation of the free amino-acids in organic soil types using paper partition chromatography. Journal of Soil Science 4: 67–71.

    Article  Google Scholar 

  • Di Castri F (1973) Soil animals in latitudinal and topographical gradients of Mediterranean ecosystems. In: Di Castri F, Mooney HA (eds) Mediterranean-type ecosystems: origin and structure. Springer-Verlag, Berlin, pp 171–190.

    Google Scholar 

  • Dox AW, Golden R (1911) Phytase in lower fungi. Journal of Biological Chemistry 10: 183–186.

    Google Scholar 

  • Dutt GR, Shaffer MJ, Moore WJ (1972) Computer simulation model of dynamic bio-physicochemical processes in soil. Technical Bulletin 196. University of Arizona, Tucson.

    Google Scholar 

  • Edwards CA, Heath GW (1963) The role of soil animals in breakdown of leaf material. In: Doeksen J, Van Der Drift J (eds) Soil organisms. North Holland, Amsterdam, pp 76–83.

    Google Scholar 

  • Ellenberg VH (1977) Stickstoff als Standortsfaktor in für mitteleuropäische Pflanzengesellschaften. Oecologia Plantarum 12: 1–22.

    CAS  Google Scholar 

  • Feeny PP (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581.

    Article  Google Scholar 

  • Feeny PP, Bostock H (1978) Seasonal changes in the tannin content of leaves. Phytochemistry 7: 871–880.

    Article  Google Scholar 

  • Flanagan PW, Veum AK (1974) Relationships between respiration, weight loss, temperature and moisture in organic residues in tundra. In: Holding AJ, Heal O, Maclean SF, Flanagan PW (eds) Soil organisms and decomposition in tundra. Ibp Tundra Biome, Stockholm, pp 249–278.

    Google Scholar 

  • Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Canadian Journal of Botany 55: 1632–1640.

    Article  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook forest, New Hampshire. Ecological Monographs 43: 173–191.

    Article  Google Scholar 

  • Greaves MP, Anderson G, Webley DM (1967) The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochemica Biophysica Acta 132: 412–418.

    CAS  Google Scholar 

  • Handley WRC (1954) Mull and moor formation in relation to forest soils. Forestry Commission Bulletin No. 23. HMSO, London, pp 1–115.

    Google Scholar 

  • Harley JL (1969) The biology of mycorrhiza. Leonard Hill, London, 334 pp.

    Google Scholar 

  • Harley JL (1971) Fungi in ecosystems. Journal of Ecology 59: 653–668.

    Article  Google Scholar 

  • Harmsen CW, Van Schreven DA (1955) Mineralization of organic nitrogen in soil. Advances in Agronomy 7: 299–398.

    Article  Google Scholar 

  • Harrison AF (1971) The inhibitory effect of oak leaf litter tannins on the growth of fungi in relation to litter decomposition. Soil Biology and Biochemistry 3: 167–172.

    Article  CAS  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high alpine vegetation systems with special reference to mycorrhiza. Oecologia 45: 57–62.

    Article  Google Scholar 

  • Hattingh MJ, Gray LE, Gerdeman JW (1973) Uptake and translocation of 32p-labelled phosphate to onion roots by endomycorrhizal fungi. Soil Science 116: 383–390.

    Article  CAS  Google Scholar 

  • Hayman DS (1975) Phosphorus cycling by soil micro-organisms and plant roots. In: Walker N (ed) Soil microbiology. Butterworth, London, pp 67–91.

    Google Scholar 

  • Heal OW, French DD (1974) Decomposition of organic matter in tundra. In: Holding AJ (ed) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, pp 279–310.

    Google Scholar 

  • Heal OW, Latter PM, Howson G (1978) A study of the rates of decomposition of organic matter. In: Heal OW, Perkins DF (eds) Production ecology of British moors and montane grasslands. Springer-Verlag, Berlin, pp 136–159.

    Chapter  Google Scholar 

  • Ho I, Zak B (1979) Acid phosphatase activity of six ectomycorrhizal fungi. Canadian Journal of Botany 57: 1203–1205.

    Article  CAS  Google Scholar 

  • Jenny H, Gessel SP, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Science 68: 419–432.

    Article  CAS  Google Scholar 

  • Jones MB, Woodmansee RG (1979) Biogeochemical cycling in annual grassland ecosystems. Botanical Review 45: 111–144.

    Article  CAS  Google Scholar 

  • Jones R (1968) Estimating productivity and apparent photosynthesis from differences in consecutive measurements of total living plant parts of an Australian heathland. Australian Journal of Botany 16: 589–602.

    Article  Google Scholar 

  • King HGC, Heath GW (1967) The chemical analysis of small samples of leaf material and the relationship between the disappearance and composition of leaves. Pedobiologia 7: 192–197.

    Google Scholar 

  • Kittredge J (1955) Litter and forest floor of the chaparral in parts of the San Dimas Experimental Forest, California. Hilgardia 23: 563–596.

    Google Scholar 

  • Kowlenko CG (1978) Organic nitrogen, phosphorus and sulphur in soils. In: Schnitzer M, Khan SU (eds) Soil organic matter. Developments in Soil Science 8: Elsevier, Amsterdam, pp 95–136.

    Google Scholar 

  • Kruger FJ (1979) South African heathlands. In: Specht RL (ed) Ecosystems of the world, vol 9A. Heathlands and related shrublands. Descriptive studies. Elsevier, Amsterdam, pp 19–80.

    Google Scholar 

  • Kummerow J (1973) Comparative anatomy of sclerophylls of mediterranean climatic areas. In: Di Castri F, Mooney HA (eds) Mediterranean type ecosystems: origin and structure. Springer-Verlag, Berlin, pp 157–167.

    Google Scholar 

  • Kummerow J, Krause D, Jow J (1978) Seasonal changes of fine root density in the southern Californian chaparral. Oecologia 37: 201–212.

    Article  Google Scholar 

  • Latter P, Cragg JB, Heal OW (1967) Comparative studies on the microbiology of moorland soils in the northern Pennines. Journal of Ecology 55: 445–464.

    Article  Google Scholar 

  • Lee JA, Stewart G (1978) Ecological aspects of nitrogen assimilation. Advances in Botanical Research 6: 1–43.

    Article  CAS  Google Scholar 

  • Lofty JR (1974) Oligochaetes. In: Dickinson CH, Pugh GFJ (eds) Biology of plant litter decomposition, vol 2. Academic Press, London, pp 467–488.

    Google Scholar 

  • Lossaint P (1973) Soil-vegetation relationships in mediterranean ecosystems of southern France. In: Di Castri F, Mooney HA (eds) Mediterranean type ecosystems: origin and structure. Springer-Verlag, Berlin, pp 199–210.

    Google Scholar 

  • Lousier JD, Parkinson D (1978) Chemical element dynamics in decomposing leaf litter. Canadian Journal of Botany 56: 2795–2812.

    Article  CAS  Google Scholar 

  • Loveless AR (1961) A nutritional interpretation of sclerophylly based upon differences in the chemical composition of sclerophyllous and mesophytic leaves. Annals of Botany (London) New Series 25: 168–184.

    CAS  Google Scholar 

  • Loveless AR (1962) Further evidence to support a nutritional interpretation of sclerophylly. Annals of Botany (London) New Series 26: 551–561.

    Google Scholar 

  • Lutz HJ, Chandler RF (1946) Forest soils. Wiley, New York, pp 150.

    Google Scholar 

  • Maggs J, Pearson CJ (1977) Litter fall and litter layer decay in coastal scrub at Sydney, Australia. Oecologia 31: 239–250.

    Article  Google Scholar 

  • Marcuzzi G (1970) Experimental observations on the role of Glomeris spp. (Myriopoda:Diplopoda) in the process of humification of litter. Pedobiologia 10: 401–406.

    Google Scholar 

  • Marion GM, Kummerow J, Miller PC (1982) Predicting nitrogen mineralization in chaparral soils. Ecology. In press.

    Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465–472.

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. In press.

    Google Scholar 

  • Minderman G (1968) Addition, decomposition and accumulation of organic matter in forests. Journal of Ecology 56: 355–362.

    Article  Google Scholar 

  • Mitchell DT, Read DJ (1981) Effect of inorganic and organic phosphates on the growth of the mycorrhizal endophytes of Vaccinium macrocarpon and Rhododendron ponticum. Transactions of the British Mycological Society 76: 255–260.

    Article  CAS  Google Scholar 

  • Monk CD (1966) An ecological significance of evergreenness. Ecology 47: 504–505.

    Article  Google Scholar 

  • Mooney HA (1977) Southern coastal scrub. In: Barbour MG, Major J (eds) Terrestrial vegetation of California. Wiley, New York, pp 471–489.

    Google Scholar 

  • Mooney HA, Rundel PW (1979) Nutrient relations of the evergreen shrub Adenostoma fasciculatum, in the Californian chaparral. Botanical Gazette 140: 109–113.

    Article  CAS  Google Scholar 

  • Mosse B (1973) Advances in the study of vesicular-arbuscular mycorrhizas. Annual Review of Phytopathology 11: 171–189.

    Article  Google Scholar 

  • Nye PH (1961) Organic matter and nutrient cycles under moist tropical forest. Plant and Soil 13: 333–346.

    Article  CAS  Google Scholar 

  • Nykvist N (1963) Leaching and decomposition of water soluble organic substances from different types of leaf and needle litter. Studia Forestalia Suecica 3: 3–29.

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Article  Google Scholar 

  • Pugh GJF (1974) Terrestrial fungi. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition. Academic Press, London, pp 303–336.

    Google Scholar 

  • Read DJ (1978) The biology of mycorrhiza in heathland ecosystems with special reference to the nitrogen nutrition of the Ericaceae. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer-Verlag, Berlin, pp 24–328.

    Google Scholar 

  • Ead DJ, Jalal MAF (1980) The physiological basis of interaction between Calluna vulgaris, forest trees and other plant species. In: Proceedings of the conference on weed control in forestry. Association of Applied Biologists, London, pp 21–33.

    Google Scholar 

  • Read DJ, Stribley DP (1973) Effect of mycorrhizal infection on nitrogen and phosphorus nutrition of ericaceous plants. Nature 244: 81.

    CAS  Google Scholar 

  • Ribereau-Gayon P (1972) Plant phenolics. Oliver and Boyd Edinburgh, pp 254.

    Google Scholar 

  • Robertson RA, Davies GE (1965) Quantities of plant nutrients in heather ecosystems. Journal of Applied Ecology 2: 211–219.

    Article  Google Scholar 

  • Rodin LE, Bazilevich NI (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh, pp 288.

    Google Scholar 

  • Rosswell T (1976) The internal nitrogen cycle between micro-organismic vegetation and soil. Ecological Bulletin (Stockholm) 22: 157–167.

    Google Scholar 

  • Rundel PW, Parsons DJ (1980) Nutrient changes in two chaparral shrubs along a fire induced age gradient. American Journal of Botany 67: 51–58.

    Article  Google Scholar 

  • Russell EW (1973) Soil conditions and plant growth. 10th edn. Longmans, London. 849 pp.

    Google Scholar 

  • Santantonio D, Herman RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17: 1–31.

    CAS  Google Scholar 

  • Sasson A, Daste P (1963) Observations nouvelles concernant l’cologie de l’Azotobacter dans certains sols arides du Maroc. Comptes Rendus de l’Academie de Science 257: 3516.

    CAS  Google Scholar 

  • Schaeffer R (1973) Microbial activity under seasonal conditions of drought in mediterranean climates. In: Di Castri F, Mooney HA (eds) Mediterranean type ecosystems: origin and structure. Springer-Verlag, Berlin, pp 191–198.

    Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62: 762–774.

    Article  CAS  Google Scholar 

  • Sewell GWF (1959) Studies on fungi in a Calluna heathland soil. I. Vertical distribution in soil and on root surfaces. Transactions of the British Mycological Society 42: 343–350.

    Article  Google Scholar 

  • Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review 43: 449–528.

    Article  CAS  Google Scholar 

  • Smith SJ, Young LB, Miller GE (1977) Evaluation of soil nitrogen mineralization potentials under modified field conditions. Journal of the Soil Science Society of America 41: 74–76.

    Article  CAS  Google Scholar 

  • Specht RL (1969) A comparison of the sclerophyllous vegetation characteristic of mediterranean type climates in France, California and southern Australia. II. Dry matter, energy and nutrient accumulation. Australian Journal of Botany 17: 293–308.

    Article  CAS  Google Scholar 

  • Specht RL (1979) Heathlands and related shrublands of the world. In: Specht RL (ed) Ecosystems of the world, vol 9A. Heathlands and related shrublands. Descriptive studies. Elsevier, Amsterdam, pp 1–18.

    Google Scholar 

  • Specht RL, Rayson P, Jackman ME (1958) Dark Island heath (Ninety-Mile Plain, South Australia). VI. Pyric succession: Changes in composition, coverage, dry weight and mineral nutrient status. Australian Journal of Botany 6: 59–88.

    Article  Google Scholar 

  • Stanford G, Legg JO, Smith SJ (1973) Soil nitrogen availability evaluations based on nitrogen mineralization potentials of soils and uptake of labelled and unlabelled nitrogen by plants. Plant and Soil 39: 113–124.

    Article  CAS  Google Scholar 

  • Stribley DP, Read DJ (1974) The biology of mycorrhiza in the Ericaceae. IV. The effect of mycorrhizal infection on uptake of 15N from labelled soil by Vaccinium macrocarpon Ait. New Phytologist 73: 1149–1155.

    Article  Google Scholar 

  • Stribley DP, Read DJ (1976) The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry in sand culture. New Phytologist 77: 63–72.

    Article  CAS  Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytologist 86: 365–371.

    Article  CAS  Google Scholar 

  • Suberkropp K, Godshack GL, Klug MJ (1976) Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720–727.

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in Ecology, vol 5. Blackwell, Oxford, 372 pp.

    Google Scholar 

  • Thrower NJW, Bradbury DE (eds) (1977) Chile-Californian mediterranean scrub atlas. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, 237 pp.

    Google Scholar 

  • Van Cleve K (1974) Organic matter quality in relation to decomposition. In: Holding AJ, Heal OW, Maclean SF and Flanagan P (eds) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, pp 311–324.

    Google Scholar 

  • Watts DG, Hanks RJ (1978) A soil-water nitrogen model for irrigated corn on sandy soils. Journal of the Soil Science Society of America 42: 492–499.

    Article  CAS  Google Scholar 

  • Wicht CL (1971) The influence of vegetation in the South African mountain catchments on water supplies. South African Journal of Science 67: 201–209.

    Google Scholar 

  • Witkamp M (1966) Decomposition of leaf litter in relation to environment, microflora and microbial respiration. Ecology 47: 194–201.

    Article  Google Scholar 

  • Witkamp M, Crossley DA (1966) The role of arthropods and microflora in the breakdown of white oak litter. Pedobiologia 6: 293–303.

    Google Scholar 

  • Witkamp M, Olson JS (1963) Breakdown of confined and non-confined oak litter. Oikos 14: 138–147.

    Article  Google Scholar 

  • Woolhouse HW (1969) Differences in the properties of the acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford, pp 357–380.

    Google Scholar 

  • Yeilding L (1977) Decomposition in chaparral. In: Mooney HA, Conrad CE (eds) Symposium on the environmental consequences of fire and fuel management in mediterranean ecosystems. Usda Forest Service, Washington DC, pp 419–425.

    Google Scholar 

  • Zak B (1976) Pure culture synthesis of bearberry mycorrhizae. Canadian Journal of Botany 54: 1297–1305.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Read, D.J., Mitchell, D.T. (1983). Decomposition and Mineralization Processes in Mediterranean-Type Ecosystems and in Heathlands of Similar Structure. In: Kruger, F.J., Mitchell, D.T., Jarvis, J.U.M. (eds) Mediterranean-Type Ecosystems. Ecological Studies, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68935-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68935-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68937-6

  • Online ISBN: 978-3-642-68935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics