Basic Electrophysiological Actions of Propafenone in Heart Muscle

  • M. Kohlhardt


The excitability of atrial and ventricular myocardium under physiological conditions depends on the ability of the cardiac membrane to respond to suprathreshold stimuli with an increase in Na+ permeability. This allows the occurrence of a fast Na+ inward current. However, action potential generation is not exclusively related to the availability of the fast Na+ system since Na+ inactivation as it develops after decreasing the resting potential to about −50 mV (Weidmann 1955 a) does not abolish excitability (Engstfeld et al. 1961). In this particular situation, slow response action potentials can be generated (Mascher 1970) mediated by another inward conductance system, the slow channel. This maintains excitability but may also be involved in the development of certain cardiac arrythmias (for review see Kohlhardt 1980). The antiarrhythmic effect of a drug, therefore, does not arise only from its affinity for fast Na+ channels — a fact which caused Vaughan Williams (1975) to introduce the classification of antiarrhythmics into four groups depending on the electrophysiological action. Class 1 compounds depress the fast Na+ current (INa) and comprise different drugs such as local anesthetics, quinidine, or certain β -receptor blockers with side effects on excitable membranes. Propafenone represents another member of class 1 though it loses the virtual specifity for the Na+ system when higher drug concentrations are applied. The latter phenomenon represents a widespread property of class 1 antiarrhythmics and is not peculiar to propafenone.


Voltage Dependence Interstimulus Interval Ventricular Myocardium Selectivity Filter Cardiac Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cahalan MD, Almers W, (1979) Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin. Biophys J 27: 39–56PubMedCrossRefGoogle Scholar
  2. Chen CM, Gettes LS, Katzung BG, (1975) Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of dV/dtmax in guinea-pig ventricular myocardium. Circ Res 37: 20–29PubMedGoogle Scholar
  3. Courtney KR, (1979) Fast frequency-dependent block of action potential upstroke in rabbit atrium by small local anesthetics. Life Sci 24: 1581–1588PubMedCrossRefGoogle Scholar
  4. Engstfeld G, Antoni H, Fleckenstein A, (1961) Die Restitution der Erregungsfortleitung und Kontraktionskraft des K+-gelähmten Frosch- und Säugetiermyokards durch Adrenalin. Pflügers Arch 145–163Google Scholar
  5. Gettes LS, Reuter H, (1974) Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol 240: 703–724PubMedGoogle Scholar
  6. Grant AO, Trantham JL, Brown KK, Strauss HC, (1982) pH-dependent effects of quinidine on the kinetics of dV/dtmax in guinea pig ventricular myocardium. Circ Res 50: 210–217PubMedGoogle Scholar
  7. Hauswirth O, (1968) Effects of droperidol on sheep Purkinje fibers. Naunyn-Schmiedebergs Arch Pharmacol 261: 133–142Google Scholar
  8. Hauswirth O, Singh BN, (1979) Ionic mechanisms in heart muscle in relation to the genesis and the pharmacological control of cardiac arrhythmias. Pharmacol Rev 30: 5–63Google Scholar
  9. Heistracher P, (1971) Mechanisms of action of antifibrillatory drugs. Naunyn-Schmiedebergs Arch Pharmacol 269: 199–212PubMedCrossRefGoogle Scholar
  10. Hille B, (1975) Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol 66: 535–560Google Scholar
  11. Hille B, (1977) Local anesthetics: hydrophilic and hydrophophobic pathways for the drug-receptor reaction. J Gen Physiol 69: 497–515PubMedCrossRefGoogle Scholar
  12. Hodgkin AL, Huxley AF, (1952) Currents carried by sodium and potassium through the membrane of giant axon of Loligo. J Physiol 116: 449–472PubMedGoogle Scholar
  13. Hondeghem LW, Grant AO, Jensen RA, (1974) Antiarrhythmic drug action: selective depression of hypoxic cardiac cells. Am Heart J 87: 602–605PubMedCrossRefGoogle Scholar
  14. Kern R, Einwächter HM, Haas HG, Lack EG, (1971) Cardiac membrane currents as affected by a neuroleptic agent: Droperidol. Pfluegers Arch 325: 262–278CrossRefGoogle Scholar
  15. Khodorov BI, Shishkova L, Peganov E, Revenko S, (1976) Inhibition of sodium currents in frog Ranvier node treated with local anesthetics. Role of slow sodium inactivation. Biochim Biophys Acta 433: 409–435Google Scholar
  16. Kohlhardt M, (1977) Der Einfluß von Propafenon auf den transmembranären Na+- und Ca++ -Strom der Warmblüter-Myokardfasermembran. In: Fortschritte in der Pharmakotherapie von Herzrhythmusstörungen. Fischer, Stuttgart New YorkGoogle Scholar
  17. Kohlhardt M, (1980) Genese, Eigenschaften und funktionelle Bedeutung des Slow-response-Aktionspotentials am Herzen. Z Kardiol 69: 307–315PubMedGoogle Scholar
  18. Kohlhardt M, (1982) A quantitative analysis of the Na+-dependence of Vmax of the fast action potential in mammalian ventricular myocardium. Saturation characteristics and the modulation of a druginduced INa blockade by [Na+] o. Pflügers Arch 392: 379–387Google Scholar
  19. Kohlhardt M, Seifert C, (1980) Inhibition of Vmax of the action potential by propafenone and its voltage-, time- and pH-dependence in mammalian ventricular myocardium. Naunyn-Schmiedebergs Arch Pharmacol 315: 55–62PubMedCrossRefGoogle Scholar
  20. Luckstead EF, Tarr M, (1972) Comparison of quinidine and bretylium tosylate effects on cardiac ionic currents. Fed Proc 31: 818Google Scholar
  21. Mascher D, (1970) Electrical and mechanical responses from ventricular muscle fibres after inactivation of the sodium carrying system. Pfluegers Arch 317: 359–372CrossRefGoogle Scholar
  22. Tarr M, Luckstead EF, Jurewics PA, Haas HG, (1973) Effect of propranolol on the fast inward sodium current in frog atrial muscle. J Pharmacol Exp Ther 184: 599–610PubMedGoogle Scholar
  23. Tritthart H, Fleckenstein B, Fleckenstein A, Krause H, (1968) Frequenzabhängige Einflüsse von antiarrhythmisch-wirksamen Substanzen auf die Aufstrichsgeschwindigkeit des Aktionspotentials (Versuche an isolierten Meerschweinchenpapillarmuskeln). Pfluegers Arch 300: 52Google Scholar
  24. Vaughan Williams EM, (1975) Classification of antidysrhythmic drugs. Pharmacol Ther [B] 1: 115–138CrossRefGoogle Scholar
  25. Weidmann S, (1955 a) The effect of cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol 127: 213–224PubMedGoogle Scholar
  26. Weidmann S, (1955 b) Effects of calcium and local anesthetics on electrical properties of Purkinje fibres. J Physiol 129: 568–582PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • M. Kohlhardt

There are no affiliations available

Personalised recommendations