Skip to main content

The Photoregulation of Anthocyanin Synthesis

  • Chapter
Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

The anthocyanins (glycosilated anthocyanidins) are water-soluble, vacuolar pigments, responsible for the violet, blue, purple, dark red and scarlet coloration of fruits, flowers, stems and leaves in all orders of higher plants (Swain 1976), with one exception, the order Centrospermae, where the violet-red colors are due to a different group of water soluble vacuolar pigments, the betacyanins (Piattelli 1976). The anthocyanins form one group of a class of water-soluble pigments, the flavonoids, which include, beside the anthocyanins, flavonols, flavones, flavanones, cathechins, chalkones and others. The flavonoids share a common structural unit, the C6C3C6 skeleton of flavone (Swain 1976). The flavonoids are widespread throughout the plant kingdom and are rather abundant; it has been estimated that about 1.5% of the carbon fixed annually in photosynthesis is used for the synthesis of flavonoids (Smith 1972). The flavonoids are derivatives of cinnamic acid which is formed through the deamination of phenylalanine. The early steps in the conversion of phenylalanine to derivatives of cinnamic acids are common to the pathways for the biosynthesis of cinnamate esters, flavonoids and lignins; these early steps are known as the general phenylpropanoid metabolism. The enzymes that catalyze the individual early steps are: phenalalanine ammonialyase (PAL, EC 4.3.1.5), cinnamate-4-hydroxylase (EC 1.14.13.11) and 4-courmarate: CoA ligase (EC 6.2.1.12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfermann W (1972) Induction of anthocyanin synthesis by light and auxin in tissue cultures of Daucus carota. Proc 6th Int Congr Photobiol, Bochum, Aug 21–25. Abstr No 187

    Google Scholar 

  • Arthur JM (1936) Radiation and anthocyanin pigments. In: Duggar BM (ed) Biological effects of radiation Vol 2. McGraw-Hill, New York, pp 1109–1118

    Google Scholar 

  • Attridge TH, Smith H (1967) A phytochrome-mediated increase in the level of phenylalanine ammonia-lyase activity in the terminal buds of Pisum sativum. Biochim Biophys Acta 148:805–807

    CAS  Google Scholar 

  • Beggs CJ, Holmes MG, Jabben M, Schäfer E (1980) Action spectra for the inhibition of hypocotyl growth by continuous irradiation in light and darkgrown Sinapis alba L. seedlings. Plant Physiol 66:615–618

    PubMed  CAS  Google Scholar 

  • Bellini E, Martelli M (1973) Anthocyanin synthesis in radish seedlings: effects of continuous far-red irradiation and phytochrome transformations. Z Pflanzenphysiol 70:12–21

    CAS  Google Scholar 

  • Benveniste I, Salaun JP, Durst F (1978) Phytochrome-mediated regulation of a monoxygenase hydroxylating cinnamic acid in pea seedlings. Phytochemistry 17:359–363

    CAS  Google Scholar 

  • Black M, Shuttleworth JE (1974) The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117:57–66

    Google Scholar 

  • Bolton GW, Quail PH (1981) A method for preparing green plant tissue extracts for spectrophotometric measurements of phytochrome. Plant Physiol Suppl 67:104

    Google Scholar 

  • Borthwick HA, Hendricks SB, Schneider MJ, Taylorson RB, Toole VK (1969) The high energy light action controlling plant responses and development. Proc Natl Acad Sci USA 64:479–486

    PubMed  CAS  Google Scholar 

  • Bregeaut J, Rollin P (1965) Influence de la lumiere sur la synthese des anthocyanes chez Phacelia tanacetifolia. Isr J Bot 14:59–68

    CAS  Google Scholar 

  • Briggs WR (1963) The phototropic responses of higher plants. Annu Rev Plant Physiol 14:311–352

    CAS  Google Scholar 

  • Briggs WR (1964) Phototropism in higher plants. In: Giese AC (ed) Photophysiology Vol 1. Academic Press, London New York, pp 223–271

    Google Scholar 

  • Butler WL, Lane HC (1965) Dark transformations of phytochrome in vivo. Plant Physiol 40:13–17

    PubMed  CAS  Google Scholar 

  • Butler WL, Lane HC, Siegelman HW (1963) Non photochemical transformation of phytochrome in vivo. Plant Physiol 38:514–519

    PubMed  CAS  Google Scholar 

  • Butler WL, Hendricks SB, Siegelman HW (1964) Action spectra of phytochrome in vitro. Photochem Photobiol 3:521–528

    CAS  Google Scholar 

  • Chorney W, Gordon SA (1966) Action spectrum and characteristics of the light activated disappearance of phytochrome in oat seedlings. Plant Physiol 41:891–896

    PubMed  CAS  Google Scholar 

  • Christopher EP (1939) Experiences with color development of apples after harvest. Proc Am Soc Hortic Sci 37:44–46

    Google Scholar 

  • Creasy L (1968) The significance of carbohydrate metabolism in flavonoid synthesis in strawberry leaf disks. Phytochemistry 7:1743–1749

    CAS  Google Scholar 

  • Dooskin RH, Mancinelli AL (1968) Phytochrome decay and coleoptile elongation in Avena following various light treatments. Bull Torrey Bot Club 95:474–487

    Google Scholar 

  • Downs RJ (1964) Photocontrol of anthocyanin synthesis. J Wash Acad Sci 54:112–120

    CAS  Google Scholar 

  • Downs RJ, Siegelman HW (1963) Photocontrol of anthocyanin synthesis in milo seedlings. Plant Physiol 38:25–30

    PubMed  CAS  Google Scholar 

  • Downs RJ, Siegelman HW, Butler WL, Hendricks SB (1965) Photoreceptive pigments for anthocyanin synthesis in apple skin. Nature 205:909–910

    CAS  Google Scholar 

  • Drumm H, Mohr H (1978) The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling. Photochem Photobiol 27:241–248

    CAS  Google Scholar 

  • Drumm-Herrel H, Mohr H (1981) A novel effect of UV/B in a higher plant (Sorghum vulgare). Photochem Photobiol 33:391–398

    CAS  Google Scholar 

  • Drumm H, Wildermann A, Mohr H (1975) The high irradiance response in anthocyanin formation as related to the phytochrome level. Photochem Photobiol 21:269–273

    PubMed  CAS  Google Scholar 

  • Duke SO, Naylor AW (1976) Light control of anthocyanin biosynthesis in Zea seedlings. Physiol Plant 37:62–68

    CAS  Google Scholar 

  • Duke SO, Fox SB, Naylor AW (1976) Photosynthetic independence of light induced anthocyanin formation in Zea seedlings. Plant Physiol 57:192–196

    PubMed  CAS  Google Scholar 

  • Durst F, Mohr H (1966) Phytochrome-mediated induction of enzyme synthesis in mustard seedlings (Sinapis alba L.). Naturwissenschaften 53:531–532

    PubMed  CAS  Google Scholar 

  • Eberhardt F (1954) Ãœber die Beziehungen zwischen Atmung und Anthocyansynthese. Planta 43:253–287

    CAS  Google Scholar 

  • Engelsma G (1967) Photoinduction of phenylalanine deaminase in gherkin seedlings. Effects of red and far-red light. Planta 77:49–57

    CAS  Google Scholar 

  • Engelsma G (1970) A comparative investigation of the control of phenylalanine ammonialyase activity in gherkin and red cabbage hypocotyls. Acta Bot Neerl 19:403–414

    CAS  Google Scholar 

  • Frankland B (1972) Biosynthesis and dark transformations of phytochrome. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 197–225

    Google Scholar 

  • Furuya M, Hillman WS (1966) Rapid destruction of the Pfr form of phytochrome by a substance in extracts of Pisum tissue. Plant Physiol 41:1242–1244

    PubMed  CAS  Google Scholar 

  • Furuya M, Hopkins WG, Hillman WS (1965) Effects of metal complexing and sulfhydryl compounds on non-photochemical changes of phytochrome in vivo. Arch Biochem Biophys 112:180–186

    PubMed  CAS  Google Scholar 

  • Gammermann AY, Fukshanskii L (1974) A mathematical model of phytochrome, the receptor of photomorphogenic process in plants. Ontogenez 5:122–129

    Google Scholar 

  • Gressel J (1979) Blue light photoreception. Photochem Photobiol 30:749–754

    CAS  Google Scholar 

  • Grill R (1965) Photocontrol of anthocyanin formation in turnip seedlings. I. Demonstration of phytochrome action. Planta 66:293–300

    CAS  Google Scholar 

  • Grill R (1967) Photocontrol of anthocyanin synthesis in turnip seedlings. IV. The effect of feeding precursors. Planta 76:11–24

    CAS  Google Scholar 

  • Grill R (1972) The influence of chlorophyll on in vivo difference spectra of phytochrome. Planta 108:185–202

    CAS  Google Scholar 

  • Grill R, Vince D (1966) Photocontrol of anthocyanin formation in turnip seedlings. The photoreceptors involved in the response to prolonged irradiation. Planta 70:1–12

    CAS  Google Scholar 

  • Grill R, Vince D (1969 a) Photocontrol of anthocyanin formation in turnip seedlings. Lag phases. Planta 86:116–123

    CAS  Google Scholar 

  • Grill R, Vince D (1969b) Photocontrol of anthocyanin formation in turnip seedlings. Phytochrome changes in darkness and on exposure to R and FR light. Planta 89:9–22

    CAS  Google Scholar 

  • Grill R, Vince D (1970) Photocontrol of anthocyanin formation in turnip seedlings. Wavelength dependence. Planta 95:264–271

    Google Scholar 

  • Grisebach H (1979) Selected topics in flavonoid biosynthesis. In: Swain T, Harborne JB, Van Sumere CF (eds) Recent advances in phytochemistry Vol 12. Plenum, New York London, pp 221–248

    Google Scholar 

  • Hahlbrock K, Grisebach H (1979) Enzymic control in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30:105–130

    CAS  Google Scholar 

  • Hahlbrock K, Knoblock KH, Kreuzaler F, Potts JRM, Wellmann E (1976) Coordinated induction and subsequent activity changes of two groups of metabolically interrelated enzymes. Light-induced synthesis of flavonoid glycosides in cell suspension cultures of Petroselinum hortense. Eur J Biochem 61:199–206

    PubMed  CAS  Google Scholar 

  • Hahlbrock K, Gardiner SE, Matern U, Ragg H, Schroder J (1980) The role of light in the induction of mRNA for phenylalanine ammonia-lyase and related enzymes in plant cell cultures. In: Leaver CJ (ed) Genome organization and expression in plants. Plenum, New York London, pp 187–194

    Google Scholar 

  • Harraschain H, Mohr H (1963) Der Einfluß sichtbarer Strahlung auf die Flavonolsynthese und Morphogenese der Buchweizenkeimlinge. Z Bot 51:277–299

    CAS  Google Scholar 

  • Hartmann KM (1966) A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem Photobiol 5:349–366

    CAS  Google Scholar 

  • Hartmann KM, Cohnen Unser I (1972) Analytical action spectroscopy with living systems: photochemical aspects and attenuance. Ber Dtsch Bot Ges 85:481–551

    CAS  Google Scholar 

  • Hendricks SB, Borthwick HA (1959) Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. Proc Natl Acad Sci USA 45:344–349

    PubMed  CAS  Google Scholar 

  • Hoffman HB (1937) Increasing the amount of red color of apples after harvest. Proc Am Soc Hortic Sci 35:212–216

    Google Scholar 

  • Holmes MG, Fukshansky L (1979) Phytochrome photoequilibria in green leaves under polychromatic radiation: a theoretical approach. Plant Cell Environ 2:59–65

    Google Scholar 

  • Hunt RF, Pratt LH (1980) Radioimmunoassay of phytochrome content in green, lightgrown oats. Plant Cell Environ 3:45–51

    Google Scholar 

  • Jabben M, Deitzer GF (1979) Effects of the herbicide SAN 9780 on photomorphogenic responses. Plant Physiol 63:481–485

    PubMed  CAS  Google Scholar 

  • Johnson CB (1980) The effect of red light on the high irradiance reaction of phytochrome. Plant Cell Environ 3:45–51

    CAS  Google Scholar 

  • Johnson CB, Tasker R (1979) A scheme to account quantitatively for the action of phytochrome in etiolated and light-grown plants. Plant Cell Environ 2:259–265

    Google Scholar 

  • Jose AM, Schäfer E (1978) Distorted phytochrome action spectra in green plants. Planta 138:25–28

    CAS  Google Scholar 

  • Jose AM, Vince-Prue D (1977) Light-induced changes in the photoresponses of plant stems: the loss of a high irradiance response to far-red light. Planta 135:95–100

    CAS  Google Scholar 

  • Kandeler R (1958) Die Wirkung von farbigem und weißem Licht auf die Anthocyanbildung bei Cruciferen-Keimlingen. Ber Dtsch Bot Ges 71:34–44

    CAS  Google Scholar 

  • Kidd GH, Pratt LH (1973) Phytochrome destruction. An apparent requirement for protein synthesis in the induction of the destruction mechanism. Plant Physiol 52:309–311

    PubMed  CAS  Google Scholar 

  • Klein WH, Withrow RB, Elstad V, Price L (1957) Photocontrol of growth and pigment synthesis in the bean seedling as related to irradiance and wavelength. Am J Bot 44:15–19

    CAS  Google Scholar 

  • Ku-Tai PK (1972) Photocontrol of anthocyanin synthesis. PhD Thesis, Columbia Univ

    Google Scholar 

  • Ku PK, Mancinelli AL (1972) Photocontrol of anthocyanin synthesis. Plant Physiol 49:212–217

    PubMed  CAS  Google Scholar 

  • Lackmann I (1971) Action spectra of anthocyanin synthesis in tissue culture and intact seedlings of Haplopappus gracilis. Planta 98:258–269

    CAS  Google Scholar 

  • Lange H, Shropshire W Jr, Mohr H (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol 47:649–655

    PubMed  Google Scholar 

  • Lindoo SJ, Caldwell MM (1978) Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production. Plant Physiol 61:278–282

    PubMed  CAS  Google Scholar 

  • Lisansky SG, Galston AQ (1974) Phytochrome stability in vitro. I. Effects of metal ions. Plant Physiol 53:352–359

    PubMed  CAS  Google Scholar 

  • Lisansky SG, Galston AQ (1976) Phytochrome stability in vitro. II. A low molecular weight protective factor. Plant Physiol 57:188–191

    PubMed  CAS  Google Scholar 

  • Magness JR (1928) Observations on color development in apples. Proc Am Soc Hortic Sci 25:288–292

    Google Scholar 

  • Mancinelli AL (1977) Photocontrol of anthocyanin synthesis in Spirodela polyrrhiza. Plant Physiol Suppl 59:49

    Google Scholar 

  • Mancinelli AL (1980 a) Anthocyanin synthesis in leaf disks of red cabbage. Plant Physiol Suppl 65:6

    Google Scholar 

  • Mancinelli AL (1980 b) The photoreceptors of the high irradiance responses of plant photomorphogenesis. Photochem Photobiol 32:853–857

    CAS  Google Scholar 

  • Mancinelli AL (1981) Factors affecting the spectral sensitivity of anthocyanin production under continuous irradiation. Eur Symp Light Mediated Plant Dev, Bischofsmais, West Germany, April 5–11, 1981. Book of abstracts 7.8

    Google Scholar 

  • Mancinelli AL, Rabino I (1975) Photocontrol of anthocyanin synthesis. IV. Dose dependence and reciprocity relationships. Plant Physiol 56:351–355

    PubMed  CAS  Google Scholar 

  • Mancinelli AL, Rabino I (1978) The high irradiance responses of plant photomorphogenesis. Bot Rev 44:129–180

    CAS  Google Scholar 

  • Mancinelli AL, Walsh L (1979) Photocontrol of anthocyanin synthesis. VII. Factors affecting the spectral sensitivity of anthocyanin synthesis in young seedlings. Plant Physiol 63:841–846

    PubMed  CAS  Google Scholar 

  • Mancinelli AL, Ku Tai PK, Susinno R (1974) Photocontrol of anthocyanin synthesis. Phytochrome, chlorophyll and anthocyanin synthesis. Photochem Photobiol 20:71–79

    CAS  Google Scholar 

  • Mancinelli AL, Yang CPH, Lindquist P, Anderson OR, Rabino I (1975) Photocontrol of anthocyanin synthesis. III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol 55:251–257

    PubMed  CAS  Google Scholar 

  • Mancinelli AL, Yang CPH, Rabino I, Kuzmanoff KM (1976) Photocontrol of anthocyanin synthesis. V. Further evidence against the involvement of photosynthesis in the HIR anthocyanin synthesis of young seedlings. Plant Physiol 58:214–217

    PubMed  CAS  Google Scholar 

  • Marme D, Marchai B, Schäfer E (1971) A detailed analysis of phytochrome decay and dark reversion in mustard cotyledons. Planta 100:331–336

    CAS  Google Scholar 

  • McClure JW (1974 a) Phytochrome control of oscillating levels of phenylalanine ammonia-lyase in Hordeum vulgare shoots. Phytochemistry 13:1065–1069

    CAS  Google Scholar 

  • McClure JW (1974 b) Action spectra for phenylalanine ammonia-lyase in Hordeum vulgare. Phytochemistry 13:1071–1073

    CAS  Google Scholar 

  • Mohr H (1957) Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanibildung bei Keimlingen vonSinapis alba L. Planta 49:389–405

    Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Mohr H (1978) Pattern specification and realization in photomorphogenesis. In: Shibaoka H, Furuya M, Katsumi M, Takimoto A (eds) Controlling factors in plant development. Bot Soc Jpn, Tokyo, pp 199–217

    Google Scholar 

  • Mohr H, Drumm-Herrel H (1981) Interaction between blue/UV light and light operating through the phytochrome in higher plants. In: Smith H (ed) The plant and the daylight spectrum. Academic Press, London New York, pp 423–442

    Google Scholar 

  • Mohr H, Van Ness E (1963) Der Einfluß sichtbarer Strahlung auf die Flavonoidsynthese und Morphogenese der Buchweizenkeimlinge. Z Bot 51:1–16

    CAS  Google Scholar 

  • Mohr H, Drumm H, Schmidt R, Steinitz B (1979) The effect of light pretreatments on phytochrome-mediated induction of anthocyanin and of phenylalanine ammonialyase. Planta 146:369–376

    CAS  Google Scholar 

  • Mumford FE, Jenner EL (1971) Catalysis of the phytochrome dark reaction by reducing agents. Biochemistry 10:98–101

    PubMed  CAS  Google Scholar 

  • Neyland M, Ng YL, Thimann KV (1963) Formation of anthocyanin in leaves of Kalanchoe blossfeldiana: a photoperiodic response. Plant Physiol 38:447–451

    PubMed  CAS  Google Scholar 

  • Ng YL, Thimann KV, Gordon SA (1964) The biogenesis of anthocyanins. X. The action spectrum for anthocyanin formation inSpirodela oligorrhiza. Arch Biochem Biophys 107:550–558

    PubMed  CAS  Google Scholar 

  • Ninnemann H (1980) Blue light photoreceptors. Bioscience 30:166–170

    CAS  Google Scholar 

  • Nitsch C, Nitsch JP (1966) Effects of light on the induction of phenylalanine deaminase in the tuber tissue ofHelianthus tuberosus. CR Acad Sci Paris 262:1102–1105

    CAS  Google Scholar 

  • Piattelli M (1976) The betalains. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments Vol 1. Academic Press, London New York, pp 560–596

    Google Scholar 

  • Pratt LH (1978) Molecular properties of phytochrome. Photochem Photobiol 27:81–105

    CAS  Google Scholar 

  • Pratt LH (1979) Phytochrome: function and properties. Photochem Photobiol Rev 4:59–124

    CAS  Google Scholar 

  • Proctor JT, Creasy LL (1971) Effects of supplementary light on anthocyanin synthesis in ‘Mcintosh’ apples. J Am Soc Hortic Soc 96:523–526

    Google Scholar 

  • Rabino I, Mancinelli AL, Kuzmanoff KM (1977) Photocontrol of anthocyanin synthesis. VI. Spectral sensitivity, irradiance dependence and reciprocity relationships. Plant Physiol 59:569–573

    PubMed  CAS  Google Scholar 

  • Schäfer E (1975) A new approach to explain the high irradiance responses of photomorphogenesis on the basis of phytochrome. J Math Biol 2:41–56

    Google Scholar 

  • Schäfer E, Mohr H (1974) Irradiance dependency of the phytochrome system in cotyledons of mustard (Sinapis alba L.). J Math Biol 1:9–15

    Google Scholar 

  • Schäfer E, Marchai B, Marme D (1972) In vivo measurements of phytochrome photostationary state in far-red light. Photochem Photobiol 15:457–464

    Google Scholar 

  • Schäfer E, Lassig TU, Schopfer P (1975) Photocontrol of phytochrome destruction in grass seedlings. The influence of wavelength and irradiance. Photochem Photobiol 22:193–202

    PubMed  Google Scholar 

  • Schäfer E, Lassig TU, Schopfer P (1976) Photocontrol of phytochrome destruction in dicotyledonous vs monocotyledonous seedlings. The influence of wavelength and irradiance. Photochem Photobiol 24:567–572

    Google Scholar 

  • Schmidt W (1980) Physiological blue light reception. Struct Bonding 41:1–44

    CAS  Google Scholar 

  • Schmidt R, Mohr H (1981) Time-dependent changes in the responsiveness to light of phytochrome mediated anthocyanin synthesis. Plant Cell Environ 4:433–437

    CAS  Google Scholar 

  • Schneider M, Stimson W (1972) Phytochrome and photosystem I interaction in a high energy response. Proc Natl Acad Sci USA 69:2150–2154

    PubMed  CAS  Google Scholar 

  • Schopfer P (1977) Phytochrome control of enzymes. Annu Rev Plant Physiol 28:223–252

    CAS  Google Scholar 

  • Schopfer P, Mohr H (1972) Phytochrome mediated induction of phenylalanine ammonialyase in mustard seedlings. A contribution to eliminate some misconceptions. Plant Physiol 49:8–10

    PubMed  CAS  Google Scholar 

  • Schräder AL, Marth PC (1931) Light intensity as a factor in the development of apple color and size. Proc Am Soc Hortic Sci 28:552–558

    Google Scholar 

  • Shropshire W Jr (1972a) Phytochrome, a photochromic sensor. In: Giese AC (ed) Photophysiology Vol 7. Academic Press, London New York, pp 33–72

    Google Scholar 

  • Shropshire W Jr (1972b) Action spectroscopy. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 161–181

    Google Scholar 

  • Shropshire W Jr (1980) Carotenoids as primary photoreceptors in bluelight responses. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 172–186

    Google Scholar 

  • Siegelman HW, Hendricks SB (1957) Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol 32:393–398

    PubMed  CAS  Google Scholar 

  • Siegelman HW, Hendricks SB (1958) Photocontrol of anthocyanin synthesis in apple skin. Plant Physiol 33:185–190

    PubMed  CAS  Google Scholar 

  • Slabecka-Szweykowska A (1955) On the influence of the wavelength of light on the biogenesis of anthocyanin pigment in the Vitis vinifera tissue in vitro. Acad Soc Bot Polon 24:3–11

    Google Scholar 

  • Smith H (1970) Phytochrome and photomorphogenesis in plants. Nature 277:665–668

    Google Scholar 

  • Smith H (1972) The photocontrol of flavonoid biosynthesis. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 433–481

    Google Scholar 

  • Smith H (1975) Phytochrome and photomorphogenesis. McGraw-Hill, London, pp 1–235

    Google Scholar 

  • Smith H, Attridge TH (1970) Increased phenylalanine ammonia-lyase activity due to light treatments and its significance for the mode of action of phytochrome. Phytochemistry 9:487–495

    CAS  Google Scholar 

  • Smith H, Kendrick RE (1976) The structure and properties of phytochrome. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments Vol 1. Academic Press, London New York, pp 377–424

    Google Scholar 

  • Smith WO (1981a) Probing the molecular structure of phytochrome with immobilized Cibacron blue 3GA and blue dextran. Proc Natl Acad Sci USA 78:2977–2980

    PubMed  CAS  Google Scholar 

  • Smith WO (1981b) Characterization of the photoreceptor protein, phytochrome. Photochem Photobiol 33:961–964

    CAS  Google Scholar 

  • Smith WO, Daniels SM (1981) Purification of phytochrome by affinity chromatography on agarose-immobilized Cibacron Blue 3GA. Plant Physiol 68:443–446

    PubMed  CAS  Google Scholar 

  • Song PS (1981) Interaction between phytochrome and flavin: implication in HIR. Eur Symp Light-Mediated Plant Dev, Bischofsmais, West Germany, April 5–11, 1981. Book of Abstracts: 9.16

    Google Scholar 

  • Steinitz B, Bergfeld R (1977) Pattern Formation underlying phytochrome-mediated anthocyanin synthesis in the cotyledons of Sinapis alba L. Planta 133:229–235

    CAS  Google Scholar 

  • Steinitz B, Drumm H, Mohr H (1976) The appearance of competence for phytochromemediated anthocyanin synthesis in the cotyledons of Sinapis alba L. Planta 130:23–31

    CAS  Google Scholar 

  • Steinitz B, Schäfer E, Drumm H, Mohr H (1979) Correlation between far-red absorbing phytochrome and response in phytochrome mediated anthocyanin synthesis. Plant Cell Environ 2:159–163

    Google Scholar 

  • Stone HJ, Pratt LH (1978) Phytochrome destruction: apparent inhibition by ethylene. Plant Physiol 62:922–923

    PubMed  CAS  Google Scholar 

  • Stone HJ, Pratt LH (1979) Characterization of the destruction of phytochrome in the red absorbing form. Plant Physiol 63:680–682

    PubMed  CAS  Google Scholar 

  • Swain T (1976) Nature and properties of flavonoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, London New York, pp 425–463

    Google Scholar 

  • Thimann K, Radner BS (1958) The biogenesis of anthocyanin. VI. The role of riboflavin. Arch Biochem Biophys 74:209–223

    PubMed  CAS  Google Scholar 

  • Tokhver AK, Voskresenskaya NP (1971) Light curves of anthocyanin accumulation in buckwheat seedlings under light of different quality. Fiziol Rast 18:904–910

    Google Scholar 

  • Vince D, Grill R (1966) The photoreceptors involved in anthocyanin synthesis. Photochem Photobiol 5:407–411

    CAS  Google Scholar 

  • Wagner E, Mohr H (1966) Kinetic studies to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem Photobiol 5:397–406

    CAS  Google Scholar 

  • Walter TE (1966) Factors affecting fruit colors in apples: a review of world literature. RPT E Mailing Sta 1966, pp 70–82

    Google Scholar 

  • Wellmann E (1974) Regulation of flavonoid synthesis by ultraviolet light and phytochrome in cell cultures and seedlings of parsley. Ber Dtsch Bot Ges 87:267–273

    Google Scholar 

  • Wellmann E, Baron D (1974) Phytochrome control of enzymes involved in flavonoid synthesis in cell suspension cultures of parsley (Petroselinum hortense Hoffm.). Planta 119:161–164

    CAS  Google Scholar 

  • Wellmann E, Schopfer P (1975) Phytochrome mediated de novo synthesis of phenylalanine ammonia-lyase in cell suspension cultures of parsley. Plant Physiol 55:822–827

    PubMed  CAS  Google Scholar 

  • Wellmann E, Hrazdina G, Grisebach H (1976) Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus gracilis. Phytochemistry 15:913–915

    CAS  Google Scholar 

  • Wildermann A, Drumm H, Schäfer E, Mohr H (1978) Control by light of hypocotyl growth in de-etiolated mustard seedlings. I. Phytochrome as the only photoreceptor. Planta 141:211–216

    CAS  Google Scholar 

  • Wong E (1976) Biosynthesis of flavonoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments Vol 1. Academic Press, London New York, pp 464–526

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mancinelli, A.L. (1983). The Photoregulation of Anthocyanin Synthesis. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics