Skip to main content

How Phytochrome Acts — Perspectives on the Continuing Quest

  • Chapter
Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

Knowledge about the influence of light on the form and function of plants developed over the last century. Phytochrome was recognized in 1949 as an essential absorber of light in these photomorphogenic processes. The recognition came entirely from logical deductions based on physiological responses of plants and their propagules. The discovery in 1952 of the photoreversibility of a potential response to light was the key factor leading to the present understanding of phytochrome action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bert P (1870) Recherches sur les mouvements de la sensitive (Mimosa pudica L.). Mem Soc Sci Phys Nat Bordeaux 8:1–58

    Google Scholar 

  • Birth GS (1960) Agricultural applications of the dual-monochrometer spectrometer. Agric Eng 41:432–435

    Google Scholar 

  • Borthwick HA (1972) History of phytochrome. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 3–23

    Google Scholar 

  • Borthwick HA (1972) The biological significance of phytochrome. In: Mitrakos K, Shropshire W (eds) Phytochrome. Academic Press, London New York, pp 27–44

    Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW (1948) Action spectrum for photoperiodic control of floral initiation of a long-day plant, Wintex barley (Hordeum vulgare). Bot Gaz 110:103–118

    Article  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW (1952a) The reaction controlling floral initiation. Proc Natl Acad sci USA 38:929–934

    Article  PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952b) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38:662–666

    Article  PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB, Toole EH, Toole VK (1954) Action of light on lettuce seed germination. Bot Gaz 115:205–225

    Article  Google Scholar 

  • Borthwick HA, Hendricks SB, Schneider MJ, Taylorson RB, Toole VK (1969) The high energy light action controlling plant responses and development. Proc Natl Acad Sci USA 64:479–486

    Article  PubMed  CAS  Google Scholar 

  • Bradbeer JW, Montes G (1976) The photocontrol of chloroplast development - ultra- structural aspects and photosynthetic activity. In: Smith H (ed) Light and plant development. Butterworth, London, pp 213–227

    Google Scholar 

  • Briggs WR, Chon HP (1966) The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Plant Physiol 41:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Bünning E, Mohr H (1955) Das Aktionsspektrum von Lichteinfluß auf die Keimung von Farnsporen. Naturwissenschaften 42:212

    Article  Google Scholar 

  • Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci USA 45:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Hendricks SB, Siegelman HW (1965) Purification and properties of phytochrome. In: Goodwin TW (ed) Biochemistry of plant pigments. Academic Press, London New York, pp 197–210

    Google Scholar 

  • Campbell NA, Thomson WW (1977) Effects of lanthanum and ethylenediamine tetraacetate on leaf movement of Mimosa. Plant Physiol 60:635–639

    Article  PubMed  CAS  Google Scholar 

  • Caspari R (1860) Bullardìa aquatica. Schriften Kon Physikal-Oekon Ges Königsberg 1:66–91

    Google Scholar 

  • Cedei TE, Roux SJ (1980) Further characterization of the in vitro binding of phytochrome to a membrane fraction enriched for mitochondria. Plant Physiol 66:696–703

    Article  Google Scholar 

  • Chon HP, Briggs WR (1966) Effect of red light on the phototropic sensitivity of corn coleoptiles. Plant Physiol 41:1715–1724

    Article  PubMed  CAS  Google Scholar 

  • Correli DL, Steers E, Towe KM, Shropshire W Jr (1968) Phytochrome in etiolated annual rye. IV. Physical and chemical characterization of phytochrome. Biochim Biophys Acta 168: 46–57

    Article  Google Scholar 

  • Correli DL, Edwards JL, Shropshire W Jr (1977) Phytochrome. Smithson Inst Press, Washington DC

    Google Scholar 

  • Creasy L (1968) The significance of carbohydrate metabolism in flavonoid synthesis in strawberry leaf disks. Phytochemistry 7:1743–1749

    Article  CAS  Google Scholar 

  • Downs RJ, Siegelman HW (1963) Photocontrol of anthocyanin synthesis in milo seedlings. Plant Physiol 38:25–30

    Article  PubMed  CAS  Google Scholar 

  • Downs RJ, Hendricks SB, Borthwick HA (1957) Photoreversible control of elongation of Pinto beans and other plants under normal conditions of growth. Bot Gaz 118:199–208

    Article  Google Scholar 

  • Dreyer EM, Weisenseel MH (1979) Phytochrome-mediated uptake of calcium in Mougeotia cells. Planta 146:31–39

    Article  CAS  Google Scholar 

  • Etzold H (1965) Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas. Planta 64:254–280

    Article  CAS  Google Scholar 

  • Flint LH, McAlister ED (1937) Wave lengths in the visible spectrum inhibiting the germination of light-sensitive lettuce seeds. Smithson Mise Collect 96:1–8

    Google Scholar 

  • Fondeville JC, Borthwick HA, Hendricks SB (1966) Leafletmo vement of Mimosa pudica L. I. Identification of phytochrome action. Planta 69:357–364

    Article  Google Scholar 

  • Fondeville JC, Schneider MJ, Borthwick HA, Hendricks SB (1967) Photocontrol in Mimosa pudica L. leaf movement. Planta 75:228–238

    Article  Google Scholar 

  • Galston AW, Satter RL (1976) Light, clocks and ion flux: An analysis of leaf movement. In: Smith H (ed) Light and plant development. Butterworth, London, pp 159–184

    Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  • Georgevich G, Cedei TE, Roux SJ (1977) Use of 125I-labeled phytochrome to quantitate phytochrome binding to membranes of Avena sativa. Proc Natl Acad Sci USA 74:4439–4443

    Article  PubMed  CAS  Google Scholar 

  • Gressel J, Quail PH (1976) Particle-bound phytochrome: differential pigment release by surfactants, ribonuclease and phospholipase C. Plant Cell Physiol 17:925–940

    Google Scholar 

  • Grombein S, Rüdiger W, Zimmerman H (1975) The structure of the phytochrome chro- mophore in both photoreversible forms. Hoppe-Seyler’s Z Physiol Chem 356:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Haber F, Fleischmann F (1906) The oxyhydrogen cell. I. Z Anorg Chem 51:245–288

    Article  Google Scholar 

  • Hampp R, Wellburn AR (1979) Control of mitochondrial activity by phytochrome during greening. Planta 147:229–235

    Article  CAS  Google Scholar 

  • Hartmann KM (1966) A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem Photobiol 5:349–366

    Article  CAS  Google Scholar 

  • Haupt W: (1958) Hellrot-dunkelrot-Antagonismus bei der Auslösung der Chloroplasten- bewegung. Naturwissenschaften 45: 273–274

    Article  Google Scholar 

  • Haupt W (1970) Über den Dichroismus von Phytochrome 660 und Phytochrome 730 bei Mougeotia. Z Pflanzenphysiol 62:287–298

    CAS  Google Scholar 

  • Haupt W (1971) Schwachlichtbewegung des Mougeotia-Chloroplasten im Blaulicht. Z Pflanzenphysiol 65:248–265

    Google Scholar 

  • Haupt W (1972) Localization of phytochrome within the cell. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 553–569

    Google Scholar 

  • Haupt W, Schönbohm E (1970) Light-oriented plastid movements. In: Halldal P (ed) Photobiology of microorganisms. Wiley-Interscience, New York, pp 282–307

    Google Scholar 

  • Heald F De F (1898) Conditions for the germination of the spores of bryophytes and pteridophytes. Bot Gaz 26:25–45

    Article  Google Scholar 

  • Hendricks SB, Borthwick HA (1954) Photoresponsive growth. In: Rudnik D (ed) Aspects of synthesis and order in growth. Princeton Univ Press, Princeton, pp 149–169

    Google Scholar 

  • Hendricks SB, Borthwick HA (1967) The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci USA 58:2125–2130

    Article  PubMed  CAS  Google Scholar 

  • Hendricks SB, Taylorson RB (1978) Dependence of phytochrome action in seeds on membrane organization. Plant Physiol 61:17–18

    Article  PubMed  CAS  Google Scholar 

  • Hendricks SB, Taylorson RB (1979) Dependence of thermal responses of seeds on membrane transitions. Proc Natl Acad Sci USA 76:778–781

    Article  PubMed  CAS  Google Scholar 

  • Hendricks SB, Borthwick HA, Downs RJ (1956) Pigment conversion in the formative responses of plants to radiation. Proc Natl Acad Sci USA 42:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hillman WS (1967) The physiology of phytochrome. Annu Rev Plant Physiol 18:301–324

    Article  CAS  Google Scholar 

  • Hillman WS (1972) On the physiological significance of in vivo phytochrome assay. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 573–584

    Google Scholar 

  • Hillman WS, Koukkari WL (1967) Phytochrome effects on the nyctinastic movements of Albizzia julibrissin and some other legumes. Plant Physiol 42:1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Hilton JR, Smith H (1980) The presence of phytochrome in purified barley etioplasts and its in vitro regulation of biologically active gibberellin levels in etioplasts. Planta 148:312–318

    Article  CAS  Google Scholar 

  • Hubbard DH (1952) Heterogeneous equilibria at the glass electrode-solution interface. J Res Nat Bureau Standards 48:428–437

    Article  CAS  Google Scholar 

  • Hunt RE, Pratt LH (1980) Partial characterization of undegraded oat phytochrome. Biochemistry 19:390–394

    Article  PubMed  CAS  Google Scholar 

  • Jabben M (1980) The phytochrome system in light-grown Zea mays L. Planta 149:91–96

    Article  CAS  Google Scholar 

  • Jacobi H (1914) Wachstumsreaktionen von Keimlingen, hervorgerufen durch monochromatisches Licht. 1. Rot. Sitzungsber Akad Wisá Wien Math Naturwiss 123:617–631

    Google Scholar 

  • Kinzel W (1908) Die Wirkung des Lichtes auf die Keimung. Ber Dtsch Bot Ges 26:105–115, 631–645, 654–665

    Google Scholar 

  • Klein RM, Edsall PC (1966) Substitution of redox potential for radiation in phytochrome mediated photomorphogenesis. Plant Physiol 41:949–952

    Article  PubMed  CAS  Google Scholar 

  • Lagarias JC, Glazer AN, Rapoport H (1980) Chromopeptides from C-phycocyanin, structure and linkage of a phycocyano-bilin bound to the ß subunit. J Am Chem Soc 101:5030–5037

    Article  Google Scholar 

  • Lemberg R, Legge JW (1949) Hematin compounds and bile pigments. Wiley-Interscience, New York

    Google Scholar 

  • Liverman JL (1959) Control of leaf growth by interaction of chemicals and light. In: Withrow RB (ed) Photoperiodism and related phenomena in plants and animals. AAAS Washington, pp 161–180

    Google Scholar 

  • Lundegardh H (1945) Absorption, transport, and exudation of inorganic ions by roots. Arkiv Bot 32A, 12:1–58

    Google Scholar 

  • Mackenzie JM Jr, Briggs WR, Pratt LH (1978) Phytochrome photoreversibility: empirical test of the hypothesis that it varies as a consequence of pigment compartmentation. Planta 141:129–134

    Article  CAS  Google Scholar 

  • Manabe K, Furuya M (1974) Phytochrome dependent reduction of nicotinamide nucleotides in the mitochondrial fraction isolated from etiolated pea epicotyls. Plant Physiol 53:343–347

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli AL, Rabino I (1978) The “high irradiance responses” of plant photomorphogenesis. Bot Rev 44:129–180

    Article  CAS  Google Scholar 

  • Marmè D (1977) Phytochrome: membranes as possible sites of primary action. Annu Rev Plant Physiol 28:173–198

    Article  Google Scholar 

  • Marmè D, Boisard J, Briggs WR (1973) Binding properties in vitro of phytochrome to a membrane fraction. Proc Natl Acad Sci USA 70:3861–3865

    Article  PubMed  Google Scholar 

  • Marx R, Brinkmann K (1979) Effect of temperature on the pathway of NADH-oxidation in broad-bean mitochondria. Planta 144:359–365

    Article  CAS  Google Scholar 

  • Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosmotic consequences. (Nobel Lecture 1978) Science 206:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Mohr H (1957) Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. Planta 49:389–405

    Article  Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Mohr H, Wehrung M (1960) Die Steuerung des Hypokotylwachstums bei den Keimlingen von Lactuca sativa L. durch sichtbare Strahlung. Planta 55:438–450

    Article  Google Scholar 

  • Munoz V, Butler WL (1975) Photoreceptor pigment for blue light in Neurospora crassa. Plant Physiol 55:421–426

    Article  PubMed  CAS  Google Scholar 

  • Nuernbergk E (1927) Untersuchungen über die Lichtverteilung in Avena-Koleoptilen und anderen phototropisch reizbaren Pflanzenorganen bei einseitiger Beleuchtung. Bot Abhand 12:5–162

    Google Scholar 

  • Oltmanns F (1922) Morphologie und Biologie der Algen. Fischer, Jena

    Book  Google Scholar 

  • Parker MW, Hendrick SB, Borthwick HA, Scully NJ (1946) Action spectrum for the photoperiodic control of floral initiation of short-day plants. Bot Gaz 108:1–26

    Article  Google Scholar 

  • Parker MW, Hendricks SB, Borthwick HA, Went FW (1949) Spectral sensitivity for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Am J Bot 36:194–204

    Article  Google Scholar 

  • Parker MW, Hendricks SB, Borthwick HA (1950) Action spectrum for the photoperiodic control of floral initiation of the long-day plant Hyoscyamus niger. Bot Gaz 111:242–252

    Article  CAS  Google Scholar 

  • Pratt LH (1978) Molecular properties of phytochrome. Photochem Photobiol 27:81–105

    Article  CAS  Google Scholar 

  • Pratt LH (1979) Phytochrome: function and properties. Photochem Photobiol Rev 4:59–124

    Article  CAS  Google Scholar 

  • Pratt LH, Coleman RA, Mackenzie JM Jr (1976) Immunological visualization of phytochrome. In: Smith H (ed) Light and plant development Butterworth, London, pp 75–94

    Google Scholar 

  • Priestley JH (1925) Light and growth. I. The effect of bright light exposure on etiolated plants. II. On the anatomy of etiolated plants. New Phytol 24:271–283, 25:145–170

    Article  CAS  Google Scholar 

  • Quail PH, Gressel J (1976) Particle-bound phytochrome: interaction of the pigment with ribonucleoprotein material from Cucurbita pepo L. In: Smith H (ed) Light and plant development. Butterworth, London, pp 111–128

    Google Scholar 

  • Quail PH, Marmè D, Schäfer E (1973) Particle-bound phytochrome from maize and pumpkin. Nat New Biol 245:189–191

    PubMed  CAS  Google Scholar 

  • Racusen RH (1976) Phytochrome control of electrical potentials and intercellular coupling in oat-coleoptile tissue. Planta 132:25–29

    Article  CAS  Google Scholar 

  • Racusen RH, Etherton B (1975) Role of membrane-bound fixed charges in phytochrome mediated mung bean tip adherence phenomena. Plant Physiol 55:491–495

    Article  PubMed  CAS  Google Scholar 

  • Raven CW, Shropshire W Jr (1975) Photoregulation of logarithmic fluence-response curves for phytochrome control of chlorophyll formation in Pisum sativum L. Photochem Photobiol 21:423–429

    Article  CAS  Google Scholar 

  • Raven CE, Spruit CJP (1973) Induction of rapid chlorophyll accumulation in dark-grown seedlings. III. Transport model for phytochrome action. Acta Bot Neerl 22:135–143

    CAS  Google Scholar 

  • Resühr B (1939) Beiträge zur Lichtkeimung von Amaranthus caudatus L. und Phacelia tanacetifolia Benth. Planta 30:471–506

    Article  Google Scholar 

  • Roth-Bejerano N, Kendrick RE (1979) The effects of filipin and steroids on phytochrome pelletability. Plant Physiol 63:503–506

    Article  PubMed  CAS  Google Scholar 

  • Schneider MJ, Borthwick HA, Hendricks SB (1967) Effects of radiation on flowering of Hyoscyamus niger. Am. J Bot 54:1241–1249

    Article  Google Scholar 

  • Siegelman HW, Firer EM (1964) Purification of phytochrome from oat seedlings. Biochemistry 3:418–423

    Article  PubMed  CAS  Google Scholar 

  • Siegelman HW, Hendricks SB (1957) Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol 32:393–398

    Article  PubMed  CAS  Google Scholar 

  • Small JGC, Spruit CJP, Blaauw-Jansen G, Blaauw OH (1979) Action spectra for light- induced germination in dormant lettuce seeds. I. Red region. Planta 144:125–131

    Article  CAS  Google Scholar 

  • Smith H, Evans A, Hilton JR (1978) An in vitro association of soluble phytochrome with a partially purified organelle fraction from barley leaves. Planta 141:71–76

    Article  CAS  Google Scholar 

  • Song PS, Chae Q, Gardner JD (1979) Spectroscopic properties and chromophore conformation of the photomorphogenic receptor phytochrome. Biochim Biophys Acta 576:479–495

    Article  PubMed  CAS  Google Scholar 

  • Stebler FG (1881) Über die Einwirkung des Lichtes auf die Keimung. Bot Centri 2:157–158

    Google Scholar 

  • Steiner AM (1967) Phytochrome action elicited by short wave length irradiation in polaro-tropism of germlings of a fern and a liverwort. Action Spectra. Proc Eur Ann Symp Plant Photomorphogenesis, Hvar, pp 113–116

    Google Scholar 

  • Stone HJ, Pratt LH (1979) Characterization of the destruction of phytochrome in the red-absorbing form. Plant Physiol 63:680–682

    Article  PubMed  CAS  Google Scholar 

  • Sweet HC, Hillman WS (1969) Phytochrome control of nyctinasty in Samanea as modified by oxygen, submergence, and chemicals. Physiol Plant 22:776–786

    Article  CAS  Google Scholar 

  • Tanada T (1968) Substances essential for a red, far-red light reversal attachment of mung bean root tips to glass. Plant Physiol 43:2070–2071

    Article  PubMed  CAS  Google Scholar 

  • Taylor AO, Bonner BA (1967) Isolation of phytochrome from the alga Mesotaenium and the liverwort Sphaerocarpus. Plant Physiol 42:762–766

    Article  PubMed  CAS  Google Scholar 

  • Toole VK (1973) Effects of light, temperature, and their interactions on the germination of seed. Seed Sci Tech 1:339–396

    CAS  Google Scholar 

  • Trumpf C (1924) Über den Einfluß intermittierender Belichtung auf die Etiolation der Pflanzen. Bot Arch 5:381–410

    Google Scholar 

  • Vanderhoef LN, Quail PH, Briggs WR (1979) Red light-inhibited mesocotyl elongation in maize seedlings II. Kinetic and spectral studies. Plant Physiol 63:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Van Der Woude WJ (1982a) Mechanisms of photothermal interactions in phytochrome control of seed germination. In: Meudt W (ed) Strategies of plant reproduction. Beltsville Symp Agric Res 6 (In press)

    Google Scholar 

  • Van Der Woude WJ (1982b) A dichromophoric model for the action of phytochrome: Evidence from photothermal interactions in lettuce seed germination. Proc Natl Acad Sci USA (In press)

    Google Scholar 

  • Van Der Woude WJ, Toole VK (1980) Studies of the mechanism of enhancement of phytochrome-dependent lettuce seed germination by prechilling. Plant Physiol 66:220–224

    Article  Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in Plants. McGraw-Hill, New York

    Google Scholar 

  • Warburg O, Negelein E (1929) Über das Absorptionsspektrum des Atmungsferments. Biochem Z 214:64–100

    CAS  Google Scholar 

  • Weisenseel MH, Ruppert HK (1977) Phytochrome and calcium ions are involved in light-induced depolarization in Nitella. Planta 137:225–229

    Article  CAS  Google Scholar 

  • Yamamoto KT, Furuya M (1979) Effects of enzymatically digested microsome fractions on red-light-enhanced pelletability of pea phytochrome in vitro in the presence of calcium ion. Plant Cell Physiol 20:1591–1601

    CAS  Google Scholar 

  • Yamamoto Y, Tezuka T (1972) Regulation of NAD kinase by phytochrome and control of metabolism by variation of NADP level. In : Mitrakos K, Shropshire W Jr (ed) Phytochrome. Academic Press, London New York, pp 408–429

    Google Scholar 

  • Zucker M (1969) Induction of phenylalanine ammonia-lyase in Xanthìum leaf disks. Photosynthetic requirement and effect of daylength. Plant Physiol 44: 912–922

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hendricks, S.B., Van der Woude, W.J. (1983). How Phytochrome Acts — Perspectives on the Continuing Quest. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics