Skip to main content

The Control of Cell Growth by Light

  • Chapter
Book cover Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

The photocontrol of growth in higher plants depends on the participation of cell enlargement, as revealed by measurements of cell length, diameter or volume. Although many studies of the photocontrol of growth omit an examination at cellular level, it is nevertheless necessary to include them, sometimes making assumptions about the contribution of cell extension to the overall growth pattern. It is clear, furthermore, that the role of cell division must be considered where necessary. Emphasis in this chapter will be on the growth of selected organs and possible mechanisms of the photocontrol of cell growth. Little or no attention will be given to growth substance/light interactions, effects of light on stem sections, root growth, tropistic movements and seed germination, most of which are covered elsewhere in this and other volumes of this Encyclopedia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby E, Wangermann E (1950) Studies in the morphogenesis of leaves. V. A note of the origin of differences in cell size among leaves of different levels of insertion on the stem. New Phytol 49:189–192

    Google Scholar 

  • Avery GS Jr (1933) Structure and development of the tobacco leaf. Am J Bot 20:565–592

    Google Scholar 

  • Avery GS Jr, Burkholder PB, Creighton HB (1937) Polarised growth and cell studies in the first internode and coleoptile of Avena in relation to light and dark. Bot Gaz 99:125–143

    CAS  Google Scholar 

  • Beevers L, Loveys B, Pearson JA, Wareing PF (1970) Phytochrome and hormonal control of expansion and greening of etiolated wheat leaves. Planta 90:286–294

    CAS  Google Scholar 

  • Begg JE, Wright MJ (1962) Growth and development of leaves from intercalary meristems in Phalaris arundinacea L. Nature 194:1097–1098

    Google Scholar 

  • Beggs CJ, Holmes MG, Jabben M, Schäfer E (1980) Action spectra for the inhibition of hypocotyl growth by continuous irradiation in light- and dark-grown Sinapis alba L. seedlings. Plant Physiol 66:615–618

    PubMed  CAS  Google Scholar 

  • Bindloss EA (1942) A developmental analysis of cell length as related to stem length. Am J Bot 29:179–188

    Google Scholar 

  • Blaauw OH (1961) The influence of blue, red and far red light on geotropism and growth of the Avena coleoptile. Acta Bot Neerl 10:397–450

    Google Scholar 

  • Blaauw OH (1963) Effects of red light on geotropism of Avena and their possible relations to phototropic phenomena. Acta Bot Neerl 12:424–432

    Google Scholar 

  • Blaauw-Jansen G, Blaauw OH (1966) Effect of red light on irreversible and reversible expansion of Avena coleoptile sections. Planta 71:291–304

    CAS  Google Scholar 

  • Blaauw OH, Blaauw-Jansen G, Van Leeuwen WJ (1968) An irreversible red-light-induced growth response in Avena. Planta 82:87–104

    Google Scholar 

  • Black M, Shuttleworth JE (1974) The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117:57–66

    Google Scholar 

  • Black M, Shuttleworth JE (1976) Inter-organ effects in the photocontrol of growth. In: Smith H (ed) Light and plant development. Butterworth, London, pp 317–331

    Google Scholar 

  • Black M, Vlitos AJ (1972) Possible interrelationships of phytochrome and plant hormones. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 517–550

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    CAS  Google Scholar 

  • Brotherton WB, Bartlett HH (1918) Cell measurement as an aid in the analysis of quantitative variation. Am J Bot 5:192–206

    Google Scholar 

  • Brown R, Rickless P (1949) A new method for the study of cell division and cell extension with some preliminary observations on the effect of temperature and of nutrients. Proc R Soc London B 136:110–125

    CAS  Google Scholar 

  • Burkholder PR (1936) The role of light in the life of plants. II. The influence of light upon growth and differentiation. Bot Rev 2:97–172

    CAS  Google Scholar 

  • Butler RD (1963) The effect of light intensity on stem and leaf growth in broad bean seedlings. J Exp Bot 14:142–152

    Google Scholar 

  • Camp PJ, Wickliff JL (1981) Light or ethylene treatments induce transverse cell enlargement in etiolated maize mesocotyls. Plant Physiol 67:125–128

    PubMed  CAS  Google Scholar 

  • Caubergs R, De Greef JA (1975) Studies in hook opening in Phaseolus vulgaris L. by selective R/FR pretreatments of embryonic axis and primary leaves. Photochem Photobiol 22:139–144

    PubMed  CAS  Google Scholar 

  • Chabot BF, Jurik TW, Chabot JF (1979) Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. Am J Bot 66:940–945

    Google Scholar 

  • Cleland RE (1977) The control of cell enlargement. In: Jennings DH (ed) Integration of activity in the higher plant. Cambridge Univ Press, pp 101–115

    Google Scholar 

  • Cosgrove D (1981) Rapid suppression of growth by blue light. Occurrence, time course and general characteristics. Plant Physiol 67:584–590

    PubMed  CAS  Google Scholar 

  • Cutter EG (1971) Plant anatomy: experiment and interpretation. Part 2. Organs. Arnold, London

    Google Scholar 

  • Dale JE (1964) Leaf growth in Phaseolus vulgaris. I. Growth of the first pair of leaves under constant conditions. Ann Bot NS 28:579–589

    Google Scholar 

  • Dale JE (1965) Leaf growth in Phaseolus vulgaris. II. Temperature effects and the light factor. Ann Bot NS 29:293–308

    Google Scholar 

  • Dale JE (1966) The effect of nutritional factors and certain growth substances on the growth of disks cut from the young leaves of Phaseolus. Physiol Plant 19:385–396

    CAS  Google Scholar 

  • Dale JE (1968) Cell growth in expanding primary leaves of Phaseolus. J Exp Bot 19:322–332

    Google Scholar 

  • Dale JE (1976) Cell division in leaves. In: Yeoman MM (ed) Cell division in higher plants. Academic Press, London New York, pp 315–345

    Google Scholar 

  • Dale JE, Murray D (1968) Photomorphogenesis, photosynthesis, and early growth of primary leaves of Phaseolus vulgaris. Ann Bot NS 32:767–780

    CAS  Google Scholar 

  • Dale JE, Murray D (1969) Light and cell division in primary leaves of Phaseolus. Proc R Soc London B 173:541–555

    Google Scholar 

  • De Greef JA, Caubergs R, Verbelen JP, Moerells E (1976) Phytochrome-mediated interorgan dependence and rapid transmission of the light stimulus. In: Smith H (ed) Light and plant development. Butterworth, London, pp 295–316

    Google Scholar 

  • DeLint PJAL, Edwards JL, Klein WH (1963) The red, far-red system and phytochrome. Plant Physiol 38:Suppl 24

    Google Scholar 

  • Denne PM (1966) Leaf development in Trifolium repens. Bot Gaz 127:202–210

    Google Scholar 

  • Dormer KJ (1972) Shoot organisation in vascular plants. Chapman and Hall, London

    Google Scholar 

  • Downs RJ, Hendricks SB, Borthwick HA (1957) Photoreversible control of elongation of Pinto beans and other plants under normal conditions of growth. Bot Gaz 118:199–208

    Google Scholar 

  • Duke SO, Wickliff JL (1969) Zea shoot development in response to red light interruption of the dark-growth period. I. Inhibition of the first internode elongation. Plant Physiol 44:1027–1030

    PubMed  CAS  Google Scholar 

  • Duke SO, Naylor AW, Wickliff JL (1977) Phytochrome control of longitudinal growth and phytochrome synthesis in maize seedlings. Physiol Plant 40:59–68

    CAS  Google Scholar 

  • Edwards JL, Klein WH (1964) Relationship of phytochrome concentration to physiological responses. Plant Physiol 39: Suppl 50

    Google Scholar 

  • Elliot WM (1979) Control of leaf and stem growth in light-grown pea seedlings by two high irradiance responses. Plant Physiol 63:833–836

    Google Scholar 

  • Elliot WM, Shen-Miller J (1976) Similarity in dose responses, action spectra, and red light responses between phototropism and photoinhibition of growth. Photochem Photobiol 23:195–199

    Google Scholar 

  • Erickson RO (1977) Modeling of plant growth. Annu Rev Plant Physiol 27:407–434

    Google Scholar 

  • Erickson RO, Silk WK (1980) The kinematics of plant growth. Sci Am 242(5):102–113

    Google Scholar 

  • Esau K (1960) Anatomy of seed plants. Wiley and Sons, New York

    Google Scholar 

  • Etherington JR (1975) Environment and plant ecology. Wiley and Sons, New York

    Google Scholar 

  • Evans LT (ed) (1972) Environmental control of plant growth. Academic Press, London New York

    Google Scholar 

  • Evans LT, Hendricks SB, Borthwick HA (1965) The role of light in suppressing hypocotyl elongation in lettuce and Petunia. Planta 64:201–218

    CAS  Google Scholar 

  • Fahn A (1967) Plant anatomy. Pergamon, Oxford

    Google Scholar 

  • Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31:131–148

    Google Scholar 

  • Fletcher RA, Zalik S (1964) Effect of light quality on growth and free indoleacetic acid content in Phaseolus vulgaris. Plant Physiol 39:328–331

    PubMed  CAS  Google Scholar 

  • Fletcher IRA, Peterson RL, Zalik S (1965) Effect of light quality on elongation, adventitious root production and the relation of cell number and cell size to bean seedling elongation. Plant Physiol 40:541–548

    PubMed  CAS  Google Scholar 

  • Flint LH (1944) Light and the elongation of the mesocotyl in corn. Plant Physiol 19:537–543

    PubMed  CAS  Google Scholar 

  • Foard DE (1971) The initial protrusion of a leaf primordium can form without concurrent periclinal cell divisions. Can J Bot 49:1601–1603

    Google Scholar 

  • Forde BJ (1966) Effects of various environments on the anatomy and growth of perennial ryegrass and cocksfoot. NZ J Bot 4: 455–468

    Google Scholar 

  • Frankland B, Letendre RJ (1978) Phytochrome and effects of shading on growth of woodland plants. Photochem Photobiol 27:223–230

    Google Scholar 

  • Franssen JM, Cooke SA, Digby J, Firn RD (1981) Measurements of differential growth causing phototropic curvature of coleoptiles and hypocotyls. Z Pflanzenphysiol 103:207–216

    Google Scholar 

  • Fredericq H, De Greef JA (1972) Control of vegetative growth by red, far-red reversible photoreactions in higher and lower plant-systems. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 319–346

    Google Scholar 

  • Friend DJC, Pomeroy ME (1970) Changes in cell size and number associated with the effects of light intensity and temperature on the leaf morphology of wheat. Can J Bot 48:85–90

    Google Scholar 

  • Friend DJC, Helson VA, Fisher JE (1962) Leaf growth in Marquis wheat, as regulated by temperature, light intensity and daylength. Can J Bot 40:1299–1311

    Google Scholar 

  • Fujii R (1957) Effect of light on the growth of higher plants red and near infra-red on the Vigna seedling. Seiri Seitai 7:79–86

    Google Scholar 

  • Furuya M, Pjon C-J, Fujii T, Ito M (1969) Phytochrome action in Oryza sativa L. III. The separation of photoreceptive site and growing zone in coleoptiles, and auxin transport as effector system. Dev Growth Diff 11:62–76

    CAS  Google Scholar 

  • Furuya M, Masuda Y, Yamamoto R (1972) Effects of environmental factors on mechanical properties of the cell wall in rice coleoptiles. Dev Growth Differ 14:95–105

    Google Scholar 

  • Gaba VP (1979) An analysis of photoinhibition of hypocotyl elongation in de-etiolated seedlings of Cucumis sativus L. PhD Thesis, Univ London

    Google Scholar 

  • Gaba V, Black M (1979) Two separate photoreceptors control hypocotyl elongation in green seedlings. Nature 278:51–54

    Google Scholar 

  • Garrison R, Briggs WR (1975) The growth of internodes in Helianthus in response to far-red light. Bot Gaz 136:353–357

    Google Scholar 

  • Gee H, Vince-Prue D (1976) Control of the hypocotyl hook angle in Phaseolus mungo L.: the role of the parts of the seedling. J Exp Bot 27:314–323

    Google Scholar 

  • Gentile AC, Klein RM (1964) Absence of effect of visible radiation on elongation of decapitated Avena coleoptile segments. Physiol Plant 17:299–300

    Google Scholar 

  • Gessner F (1934) Wachstum und Wanddehnbarkeit am Helianthus-Hypokotyl. Jahrb Wiss Bot 80:143–168

    Google Scholar 

  • Green PB (1976) Growth and cell pattern formation on an axis: critique of concepts, terminology, and modes of study. Bot Gaz 137:187–202

    Google Scholar 

  • Green PB (1980) Organogenesis - a biophysical view. Annu Rev Plant Physiol 31:51–82

    Google Scholar 

  • Grill R, Vince D (1966) Photocontrol of anthocyanin formation in turnip seedlings. III. The photoreceptors involved in the responses to prolonged radiation. Planta 70:1–12

    CAS  Google Scholar 

  • Grime JP (1966) Shade avoidance and shade tolerance in flowering plants. In: Bainbridge R, Evans GC, Rackham O (eds) Light as an ecological factor. Blackwell, Oxford, pp 187–207

    Google Scholar 

  • Grime JP (1979) Plant Strategies and vegetation processes. Wiley and Sons, New York

    Google Scholar 

  • Grime JP, Jeffrey DW (1964) Seedling establishment in vertical gradients of sunlight. J Ecol 53:621–642

    Google Scholar 

  • Goodchild DJ, Björkman O, Pyliotis NA (1972) Chloroplast ultrastructure, leaf anatomy, and content of chlorophyll and soluble protein in rainforest species. Carnegie Inst Wash Year Book 71:102–107

    Google Scholar 

  • Goodwin PB (1978) Phytohormones and growth and development of organs of the vegetative plant. In: Letham DS, Goodwin PB Higgins TJV (eds) Phytohormones and related compounds - a comprehensive treatise Vol II. Elsevier, Amsterdam, pp 31–173

    Google Scholar 

  • Goodwin RH (1941) On the inhibition of the first internode of Avena by light. Am J Bot 28:325–332

    Google Scholar 

  • Goodwin RH, Owens OVH (1948) An action spectrum for inhibition of the first internode of Avena by light. Bull Torrey Bot Club 75:18–21

    Google Scholar 

  • Gorton HL, Briggs WR (1980) Phytochrome responses to end-of-day irradiations in light-grown corn in the presence and absence of Sandoz 9789. Plant Physiol 66:1024–1026

    PubMed  CAS  Google Scholar 

  • Haber AH (1962) Non-essentiality of concurrent cell divisions for degree of polarisation of leaf growth. I. Studies with radiation-induced mitotic inhibition. Am J Bot 49:583–589

    Google Scholar 

  • Haber AH, Foard DE (1964) Interpretations concerning cell division and growth. In: Régulateurs naturels de la croissance végétale. (5th Int Conf on Plant Growth Substances). Cent Nat Rech Sci, pp 491–503

    Google Scholar 

  • Haberlandt (1914) Physiological plant anatomy. Translated by M. Drummond from Physiologische Pflanzenanatomie (1884). McMillan, London

    Google Scholar 

  • Häcker M, Hartmann KM, Mohr H (1964) Zellteilung und Zellwachstum im Hypokotyl von Lactuca sativa L. unter dem Einfluß des Lichtes. Planta 63:253–268

    Google Scholar 

  • Harris PJ, Lowry KH, Chapas LC (1981) Comparison of methods for measuring tissue areas in sections of plant organs. Ann Bot 47:151–154

    Google Scholar 

  • Hartmann E, Schmid K (1980) Effects of UV and blue light on the biopotential changes in etiolated hooks of dwarf beans. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 221–237

    Google Scholar 

  • Hartmann KM (1966) A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem Photobiol 5:349–366

    CAS  Google Scholar 

  • Hillman WS, Purves WK (1966) Light responses, growth factors and phytochrome transformations of Cucumis seedling tissues. Planta 70:275–284

    CAS  Google Scholar 

  • Hock B, Mohr H (1965) Eine quantitative Analyse von Wachstums Vorgängen im Zusammenhang mit der Photomorphogenese von Senfkeimlingen (Sinapis alba L.). Planta 65:1–16

    Google Scholar 

  • Holmes MG, Smith H (1977a) The function of phytochrome in the natural environment. I. Characterisation of daylight for studies in photomorphogenesis and photoperiodism. Photochem Photobiol 25:533–538

    Google Scholar 

  • Holmes MG, Smith H (1977b) The function of phytochrome, in the natural environment. IV. Light quality and plant development. Photochem Photobiol 25:551–557

    CAS  Google Scholar 

  • Hopkins WG, Hillman WS (1965) Response of excised Avena coleoptile segments to red and far-red light. Planta 65:157–166

    Google Scholar 

  • Huisinga B (1964) Influence of light on growth, geotropism and guttation of Avena seedlings grown in total darkness. Acta Bot Neerl 13:445–487

    CAS  Google Scholar 

  • Huisinga B (1967) Influence of irradiation on the distribution of growth in dark-grown Avena seedlings. Acta Bot Neerl 16:197–201

    Google Scholar 

  • Humphries EC, Wheeler AW (1960) The effects of kinetin, gibberellic acid, and light on expansion and cell division in leaf disks of dwarf bean (Phaseolus vulgaris). J Exp Bot 11:81–85

    CAS  Google Scholar 

  • Humphries EC, Wheeler AW (1963) The physiology of leaf growth. Annu Rev Plant Physiol 14:385–410

    CAS  Google Scholar 

  • Janes HW, Loercher L, Frenkel C (1976) Effect of red light and ethylene on growth of etiolated lettuce seedlings. Plant Physiol 57:420–423

    PubMed  CAS  Google Scholar 

  • Jose AM (1977) Photoreception and photoresponses in the radish hypocotyl. Planta 136:125–129

    Google Scholar 

  • Jose AM, Schafer E (1978) Distorted phytochrome action spectra in green plants. Planta 138:25–28

    CAS  Google Scholar 

  • Jose AM, Vince-Prue D (1977a) Light-induced changes in the photoresponses of plant stems; the loss of a high irradiance response to far-red light. Planta 135:95–100

    CAS  Google Scholar 

  • Jose AM, Vince-Prue D (1977b) Action spectra for the inhibition of growth in radish hypocotyls. Planta 136:131–134

    Google Scholar 

  • Jose AM, Vince-Prue D (1978) Phytochrome action: a re-appraisal. Photochem Photobiol 27:209–216

    Google Scholar 

  • Kadouri A, Atsmon D (1974) The effects of various light regimes on chloroplast DNA synthesis and replication. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. R Soc NZ Bull 12:339–343

    Google Scholar 

  • Kang BG, Ray PM (1969) Role of growth regulators in the bean hypocotyl hook opening response. Planta 87:193–205

    CAS  Google Scholar 

  • Kasperbauer MJ (1971) Spectral distribution of light in a tobacco canopy and effects of end-of-day light quality on growth and development. Plant Physiol 47:775–778

    PubMed  CAS  Google Scholar 

  • Kigel J, Schwartz A (1981) Cooperative effects of blue and red light in the inhibition of hypocotyl elongation of de-etiolated castor bean. Plant Sci Lett 21:83–88

    Google Scholar 

  • Klein RM (1965) Photomorphogenesis of the bean plumular hook. Physiol Plant 18:1026–1033

    CAS  Google Scholar 

  • Klein RM (1979) Reversible effects of green and orange-red radiation on plant cell elongation. Plant Physiol 63:114–116

    PubMed  CAS  Google Scholar 

  • Klein RM, Wansor J (1963) Effects of non-ionizing radiation on expansion of disks from leaves of dark-grown bean plants. Plant Physiol 38:5–10

    PubMed  CAS  Google Scholar 

  • Klein WH (1959) Interaction of growth factors with photoprocess in seedling growth. In: Withrow RB (ed) Photoperiodism and related phenomena in plants and animals. Am Assoc Adv Sci, Washington, DC, pp 207–215

    Google Scholar 

  • Koehler PG (1973) The roles of cell division and cell expansion in the growth of alfalfa leaf mesophyll. Ann Bot NS 37:65–68

    Google Scholar 

  • Köhler D (1977) Cell division and cell enlargement as influenced by gibberellic acid and red light in dwarf and tall peas. Z Pflanzenphysiol 82:125–136

    Google Scholar 

  • Kondo N, Fujii T, Yamaki T (1969) Effect of light on auxin transport and elongation of Avena mesocotyl. Dev Growth Diff 11:46–61

    CAS  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl inhibition in Arabodopsis thaliana (L.) HEYNH. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Larger RHM (1979) How grasses grow 2nd edn. Arnold, London

    Google Scholar 

  • Lawson VR, Weintraub RL (1975) Effects of red light on the growth of intact wheat and barley coleoptiles. Plant Physiol 56:44–50

    PubMed  CAS  Google Scholar 

  • Lecharny A (1979) Phytochrome and internode elongation in Chenopodium polyspermum L. Sites of perception. Planta 145:405–409

    Google Scholar 

  • Lecharny A, Jacques R (1979) Phytochrome and internode elongation in Chenopodium polyspermum L. The light fluence rate during the day and the end-of-day effect. Planta 146:575–577

    Google Scholar 

  • Lecharny A, Jacques R (1980) Light inhibition of ínternode elongation in green plants. Planta 149:384–388

    Google Scholar 

  • LeNoir WC Jr (1967) The effect of light on the cellular components of polarised growth in bean internodes. Am J Bot 54:876–887

    Google Scholar 

  • Liverman JL, Johnson MP, Starr L (1955) Reversible photoreaction controlling expansion of etiolated bean-leaf disks. Science 121:440–441

    PubMed  CAS  Google Scholar 

  • Loach K (1970) Shade tolerance in tree seedlings. II. Growth analysis of plants raised under artificial shade. New Phytol 69:273–286

    Google Scholar 

  • Lockhart JA (1960) Intracellular mechanism of growth inhibition by radiant energy. Plant Physiol 35:129–135

    PubMed  CAS  Google Scholar 

  • Lockhart JA (1965) Analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    PubMed  CAS  Google Scholar 

  • Lurssen K (1976) Counteraction by phytochrome to the IAA-induced hydrogen-ion excretion in Avena coleoptile cylinders. Plant Sci Lett 6:389–399

    Google Scholar 

  • Maksymowych R (1963) Cell division and cell elongation in leaf development of Xanthium pennsylvanicum. Am J Bot 50:891–901

    Google Scholar 

  • Maksymowych R (1973) Analysis of leaf development. Cambridge Univ Press

    Google Scholar 

  • Mancinelli AL (1980) The photoreceptors of the high irradiance responses of plant photomorphogenesis. Photochem Photobiol 32:853–857

    CAS  Google Scholar 

  • Mandoli DF, Briggs WR (1979) Growth characteristics of etiolated Avena sativa L. (cv. Lodi) in response to red and green light. Carnegie Inst Wash Year Book 78:140–144

    Google Scholar 

  • Masuda Y, Pjon C-J, Furuya M (1970) Phytochrome action in Oryza sativa L. V. Effects of decapitation and red and far-red light on cell wall extensibility. Planta 90:236–242

    CAS  Google Scholar 

  • McLaren JS, Smith H (1978) Phytochrome control of the growth and development of Rumex obtusifolius under simulated canopy light environments. Plant Cell Environ 1:61–67

    Google Scholar 

  • Mer CL (1966) The inhibition of cell division in the mesocotyl of etiolated oat plants by light of different frequencies. Ann Bot NS 30:17–23

    CAS  Google Scholar 

  • Mer CL, Causton DR (1963) Carbon dioxide: a factor influencing cell division. Nature 199:360–362

    CAS  Google Scholar 

  • Meijer G (1959) The spectral dependence of flowering and elongation. Acta Bot Neerl 8:189–246

    Google Scholar 

  • Meijer G (1968) Rapid growth inhibition of gherkin hypocotyls in blue light. Acta Bot Neerl 17:9–14

    Google Scholar 

  • Meijer G (1971) Some aspects of plant irradiation. Acta Hortic 22:103–108

    Google Scholar 

  • Milthorpe FL (ed) (1956) The growth of leaves. Butterworth, London

    Google Scholar 

  • Milthorpe FL, Moorby J (1974) An introduction to crop physiology. Cambridge Univ Press

    Google Scholar 

  • Mohr H (1966) Differential gene activation as a mode of action of phytochrome 730. Photochem Photobiol 5:469–483

    CAS  Google Scholar 

  • Mohr H, Appuhn U (1962) Die Steuerung des Hypocotylwachstums von Sinapis alba L. durch Licht und Gibberellinsäure. Planta 59:49–67

    CAS  Google Scholar 

  • Mohr H, Haug A (1962) Die histologischen Vorgänge während der lichtabhängigen Schließung und Öffnung des Plumulahakens bei den Keimlingen von Lactuca sativa L. Planta 59:151–164

    Google Scholar 

  • Mohr H, Noble A (1960) Die Steuerung der Schließung und Öffnung des Plumula-Hakens bei Keimlingen von Lactuca sativa durch sichtbare Strahlung. Planta 55:327–342

    Google Scholar 

  • Morgan DC, Smith H (1978) The relationship between phytochrome photoequilibrium and development in light-grown Chenopodium album L. Planta 142:187–193

    CAS  Google Scholar 

  • Muir RM, Chen Chang K (1974) Effect of red light on coleoptile growth. Plant Physiol 54:286–288

    PubMed  CAS  Google Scholar 

  • Nakata S, Lockhart JA (1966) Effects of red and far-red radiation on cell division and elongation in the stem of Pinto bean seedlings. Am J Bot 53:12–20

    Google Scholar 

  • Naunović G, Něsković M (1979) Rapid responses to light and gibberellic acid in etiolated pea stems. Photochem Photobiol 29:1173–1175

    Google Scholar 

  • Newman IA, Briggs WR (1972) Phytochrome-mediated electric potential changes in oat seedlings. Plant Physiol 50:687–693

    PubMed  CAS  Google Scholar 

  • Njoku E (1956) Studies in the morphogenesis of leaves, XI. The effect of light intensity on leaf shape in Ipomea caerulea. New Phytol 55:91–110

    Google Scholar 

  • Nobel PS (1976) Photosynthetic rates of sun versus shade leaves of Hyptis emoryi Torr. Plant Physiol 58:218–223

    PubMed  CAS  Google Scholar 

  • Nobel PS (1977) Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol Plant 40:137–144

    CAS  Google Scholar 

  • Nobel PS, Hartstock TL (1981) Development of leaf thickness for Plectranthus parviflorus - influence of photosynthetically active radiation. Plant Physiol 51:163–166

    Google Scholar 

  • Nobel PS, Zaragoza LJ, Smith WK (1975) Relation between mesophyll cell surface area, photosynthetic rate, and illumination level during development of leaves of Plectranthus parvìflorus Henckel. Plant Physiol 55:1067–1070

    PubMed  CAS  Google Scholar 

  • Paul R, Furuya M (1973) Phytochrome action in Oryza sativa L. VI. Red far-red reversible effect on early development of coleoptiles. Bot Mag 86:203–211

    CAS  Google Scholar 

  • Penny P, Penny D (1978) Rapid responses to phytohormones. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds - a comprehensive treatise Vol II. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 537–597

    Google Scholar 

  • Pike CS (1976) Lack of influence of phytochrome on membrane permeability to tritiated water. Plant Physiol 57:185–187

    PubMed  CAS  Google Scholar 

  • Pike CS, Richardson A (1977) Phytochrome-controlled hydrogen ion excretion by Avena coleoptiles. Plant Physiol 59:615–617

    PubMed  CAS  Google Scholar 

  • Pike CS, Richardson AE (1979) Red light and auxin effects on 86rubidium uptake by oat coleoptile and pea epicotyl segments. Plant Physiol 63:139–141

    PubMed  CAS  Google Scholar 

  • Pike CS, Richardson AE, Weiss ER, Aynari JM, Grushow J (1979) Short term phytochrome control of oat coleoptile and pea epicotyl growth. Plant Physiol 63:440–443

    PubMed  CAS  Google Scholar 

  • Pjon C-J, Furuya M (1967) Phytochrome action in Oryza sativa L. I. Growth responses of etiolated coleoptiles to red, far-red and blue light. Plant Cell Physiol 8:709–718

    Google Scholar 

  • Pjon C-J, Furuya M (1968) Phytochrome action in Oryza sativa L. II. The spectrophotometric versus the physiological status of phytochrome in coleoptiles. Planta 81:303–313

    CAS  Google Scholar 

  • Popp HW (1926a) A physiological study of the effect of light of various ranges of wavelength on the growth of plants. Am J Bot 13:706–737

    CAS  Google Scholar 

  • Popp HW (1926b) Effect of light intensity on growth of soy beans and its relation to the autocatalyst theory of growth. Bot Gaz 82:306–320

    CAS  Google Scholar 

  • Porath D, Atsmon D (1977) Hook opening in cucumber seedlings by narrow-band red and far-red light. Plant Sci Lett 8:217–222

    Google Scholar 

  • Porath D, Atsmon D, Raviv J (1980) Hook opening in cucumber seedlings: difference in perception in red and far-red light demonstrated using light-conducting fibres. Plant Sci Lett 17:311–316

    Google Scholar 

  • Possingham JV (1973) Effect of light quality on chloroplast replication in spinach. J Exp Bot 24:1247–1260

    Google Scholar 

  • Possingham JV, Smith JW (1972) Factors affecting chloroplast replication in spinach. J Exp Bot 23:1050–1059

    CAS  Google Scholar 

  • Powell RD, Griffith MM (1960) Some anatomical effects of kinetin and red light on disks of bean leaves. Plant Physiol 35:273–275

    PubMed  CAS  Google Scholar 

  • Powell RD, Griffith MM (1963) Some effects of kinetin, red light, and gamma radiation on growth of disks of bean leaves. Bot Gaz 124:274–278

    CAS  Google Scholar 

  • Powell RD, Morgan PW (1970) Factors involved in the opening of the hypocotyl hook of cotton and beans. Plant Physiol 45:548–552

    PubMed  CAS  Google Scholar 

  • Powell RD, Morgan PW (1980) Opening of the hypocotyl hook in seedlings as influenced by light and adjacent tissues. Planta 148:188–191

    Google Scholar 

  • Ray PM, Green PB, Cleland RE (1972) Role of turgor in plant cell growth. Nature 239:163–164

    Google Scholar 

  • Redington G (1929) Effect of the duration of light upon plant growth and development. Biol Rev Camb Philos Soc 4:180–208

    Google Scholar 

  • Reid DM, Clements JB, Carr DJ (1968) Red light induction of gibberellin synthesis in leaves. Nature 217:580–582

    CAS  Google Scholar 

  • Roesel HA, Haber AH (1963) Studies of effects of light on growth pattern and of gibberellin sensitivity in relation to age, growth rate, and illumination in intact wheat coleoptiles. Plant Physiol 38:523–532

    PubMed  CAS  Google Scholar 

  • Rubinstein B (1971) The role of various regions of the bean hypocotyl on red-light-induced hook opening. Plant Physiol 48:183–186

    PubMed  CAS  Google Scholar 

  • Sachs J von (1882) Lectures on the physiology of plants (Transl. Ward HM) Clarendon, Oxford

    Google Scholar 

  • Sachs RM (1965) Stem elongation. Annu Rev Plant Physiol 16:73–96

    CAS  Google Scholar 

  • Saurer W, Possingham JV (1970) Studies on the growth of spinach leaves (Spinacia oleracea). J Exp Bot 21:151–158

    Google Scholar 

  • Schneider CL (1941) Effect of red light on growth of the Avena seedling with special reference to the first internode. Am J Bot 28:878–886

    Google Scholar 

  • Schwabe WW (1963) Morphogenetic responses to climate. In:Evans LT (ed) Environmental control of plant growth. Academic Press, London New York, pp 311–316

    Google Scholar 

  • Senger H (ed) (1980) The blue light syndrome. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shen-Miller J, Gordon SA (1967) Gravitational compensation and the phototropic response of oat coleoptiles. Plant Physiol 42:352–360

    PubMed  CAS  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Google Scholar 

  • Shirley HL (1945) Light as an ecological factor and its measurement II. Bot Rev 11:497–532

    Google Scholar 

  • Silk WK (1980) Growth rate patterns which produce curvature and implications for the physiology of the blue light response. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 643–655

    Google Scholar 

  • Silk WK, Erickson RO (1978) Kinematics of hypocotyl curvatures. Am J Bot 65:310–319

    Google Scholar 

  • Silk WK, Erickson RO (1979) Kinematics of plant growth. J Theor Biol 76:481–501

    PubMed  CAS  Google Scholar 

  • Steer BT (1971) The dynamics of leaf growth and photosynthetic capacity in Capsicum frutescens L. Ann Bot NS 35:1003–1015

    Google Scholar 

  • Stuart DA, Jones RL (1977) Roles of extensibility and turgor in gibberellin- and dark-stimulated growth. Plant Physiol 59:61–68

    PubMed  CAS  Google Scholar 

  • Stuart DA, Durnam DJ, Jones RL (1977) Cell elongation and cell division in elongating lettuce hypocotyl sections. Planta 135:249–255

    CAS  Google Scholar 

  • Sunderland N (1960) Cell division and expansion in the growth of the leaf. J Exp Bot 11:68–80

    Google Scholar 

  • Thomas B, Dickinson HG (1979) Evidence for two photoreceptors controlling growth in de-etiolated seedlings. Planta 146:545–550

    Google Scholar 

  • Thomson BF (1950) The effect of light on the rate of development of Avena seedlings. Am J Bot 37:284–291

    Google Scholar 

  • Thomson BF (1951) The relation between age at time of exposure and response of parts of the Avena seedling to light. Am J Bot 38:635–638

    Google Scholar 

  • Thomson BF (1954) The effect of light on cell division and cell elongation in seedlings of oats and peas. Am J Bot 41:326–332

    Google Scholar 

  • Thomson BF (1959) Far-red reversal of internode-stimulating effect of red light on peas. Am J Bot 46:740–742

    Google Scholar 

  • Thomson BF, Miller PM (1962) The role of light in histogenesis and differentiation in the shoot of Pisum sativum. II. The leaf. Am J Bot 49:303–310

    Google Scholar 

  • Turner MR, Vince D (1969) Photosensory mechanisms in the lettuce seedling hypocotyl. Planta 84:368–382

    Google Scholar 

  • Turrell FM (1936) The area of the internal exposed surface of dicotyledon leaves. Am J Bot 23:255–264

    Google Scholar 

  • Vanderhoef LN, Quail PH, Briggs WR (1979) Red light-inhibited mesocotyl elongation in maize seedlings. II. Kinetic and spectral studies. Plant Physiol 63:1052–1067

    Google Scholar 

  • Van Volkenburgh E, Cleland RE (1979) Separation of cell enlargement and division in bean leaves. Planta 146:245–247

    Google Scholar 

  • Van Volkenburgh E, Cleland RE (1980) Proton excretion and cell expansion in bean leaves. Planta 148:273–278

    Google Scholar 

  • Van Volkenburgh E, Cleland RE (1981) Control of light-induced bean leaf expansion: role of osmotic potential, wall yield stress and hydraulic conductivity. Planta 153:572–577

    Google Scholar 

  • Verbelen JP, De Greef JA (1979) Leaf development of Phaseolus vulgaris L. in light and darkness. Am J Bot 66:970–976

    Google Scholar 

  • Vince D (1964) Photomorphogenesis in plant stems. Biol Rev 39:506–536

    Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, London

    Google Scholar 

  • Vince-Prue D (1977) Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida. Planta 133:144–156

    Google Scholar 

  • Vince-Prue D, Gutteridge CG, Buck MW (1976) Photocontrol of petiole elongation in light-grown strawberry plants. Planta 131:109–114

    Google Scholar 

  • Warner T, Ross JD (1981) Phytochrome control of maize coleoptile section elongation: the role of cell wall extensibility. Plant Physiol 68:1024–1026

    PubMed  CAS  Google Scholar 

  • Warner T, Ross JD, Coombs J (1981) Phytochrome control of maize coleoptile section elongation. Plant Physiol 67:355–357

    PubMed  CAS  Google Scholar 

  • Warrington IJ, Mitchell KJ (1976) The influence of blue- and red-biased light spectra on the growth and development of plants. Agric Met 16:247–262

    Google Scholar 

  • Wassink EC, Stolwijk JAJ (1956) Effects of light quality on plant growth. Annu Rev Plant Physiol 7:373–400

    CAS  Google Scholar 

  • Weintraub RL, Price L (1947) Developmental physiology of the grass seedling. II. Inhibition of mesocotyl elongation in various grasses by red and violet light. Smithson Mise Collect 106: No 21

    Google Scholar 

  • Went FW (1941) Effect of light on stem and leaf growth. Am J Bot 28:83–95

    CAS  Google Scholar 

  • Wildermann A, Drumm H, Schäfer E, Mohr H (1978a) Control by light of hypocotyl growth in de-etiolated mustard seedlings. I. Phytochrome as the only photoreceptor pigment. Planta 141:211–216

    CAS  Google Scholar 

  • Wildermann A, Drumm H, Schäfer E, Mohr H (1978b) Control by light of hypocotyl growth in de-etiolated mustard seedlings. II. Sensitivity for newly-formed phytochrome after a light to dark transition. Planta 141:217–223

    CAS  Google Scholar 

  • Williams RF (1975) The shoot apex and leaf growth. Cambridge Univ Press

    Google Scholar 

  • Williams RF, Rijven AHGC (1970) The physiology of growth in subterranean clover. 2. The dynamics of leaf growth. Aust J Bot 18:149–166

    CAS  Google Scholar 

  • Wright STC (1961) A sequential growth response to gibberellic acid, kinetin and indolyl-3-acetic acid in the wheat coleoptile (Trìtìcum vulgare L.). Nature 190:699–700

    PubMed  CAS  Google Scholar 

  • Wylie RB (1951) The principles of foliar organisation shown by sun-shade leaves from ten different species of deciduous dicotyledenous trees. Am J Bot 38:355–361

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaba, V., Black, M. (1983). The Control of Cell Growth by Light. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics