Skip to main content

Intracellular Photomorphogenesis

  • Chapter
Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

Growth, differentiation and the integration of these processes ( = morphogenesis) in the multicellular plant is profoundly influenced by light acting through photomorphogenetic sensor and effector molecules, from which phytochrome is the one most widely known. It is obvious that a similar situation exists at the next lower level in the hierarchy of complexity, i.e., at the level of the cell which functions as an integrated system of numerous subcellular compartments. A major reason for studying the functional and structural changes within the cell during photomorphogenesis is the hope that the regulatory processes governing the coordinate development of subcellular compartments may, at the present state of experimental arts, be more open for a successful attack than those directing photomorphogenesis of the whole plant. (In its strict sense this problem has been hardly addressed up till now). Indeed the last few years have seen the advent of powerful new techniques for the in vitro investigation of basic cellular processes such as DNA transcription and RNA translation by the various genetic systems, or the specific transport of functional proteins from one cell compartment to another. These techniques are now being explored in the research on intracellular photomorphogenesis. It appears appropriate, therefore, to devote this chapter mainly to a critical review of the recent molecular approaches in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzelius BA (1965) The occurrence and structure of microbodies. A comparative study. J Cell Biol 26:835–843

    PubMed  CAS  Google Scholar 

  • Apel K (1979) Phy to chrome-induced appearance of mRNA activity for the apoprotein of the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare). Eur J Biochem 97:183–188

    PubMed  CAS  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome induced decrease of translatable mRNA coding for the NADPH-pro- tochlorophyllide oxidoreductase. Eur J Biochem 120:89–93

    PubMed  CAS  Google Scholar 

  • Apel K, Kloppstech K (1978) The plastid membranes of barley (Hordeum vulgare). Light- induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur J Biochem 85:581–588

    PubMed  CAS  Google Scholar 

  • Apel K, Kloppstech K (1980) The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein. Evidence for the requirement of chlorophyll a for the stabilization of the apoprotein. Planta 150:426–430

    CAS  Google Scholar 

  • Apel K, Santel HJ, Redlinger TE, Falk H (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 111:251–258

    PubMed  CAS  Google Scholar 

  • Armond PA, Staehelin LA, Arntzen CJ (1977) Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol 73:400–418

    PubMed  CAS  Google Scholar 

  • Augustinussen E, Madsen A (1965) Regeneration of protochlorophyll in etiolated barley seedlings following different light treatments. Physiol Plant 18:828–837

    CAS  Google Scholar 

  • Bain JB, Mercer FV (1966a) Subcellular organization of the developing cotyledons of Pisum sativum L. Aust J Biol Sci 19:49–67

    Google Scholar 

  • Bain JM, Mercer FY (1966b) Subcellular organization of the cotyledons in germinating seeds and seedlings of Pisum sativum L. Aust J Biol Sci 19:69–84

    Google Scholar 

  • Bajracharya D, Schopfer P (1979) Effect of light on the development of glyoxysomal functions in the cotyledons of mustard (Sinapis alba L.) seedlings. Planta 145:181–186

    CAS  Google Scholar 

  • Bajracharya D, Falk H, Schopfer P (1976) Phytochrome-mediated development of mitochondria in the cotyledons of mustard (Sinapis alba L.) seedlings. Planta 131:253–261

    CAS  Google Scholar 

  • Barraclough R, Ellis RJ (1979) The biosynthesis of ribulosebisphosphate carboxylase. Uncoupling of the synthesis of the large and small subunits in isolated soybean leaf cells. Eur J Biochem 94:165–177

    PubMed  CAS  Google Scholar 

  • Batschauer A, Santel HJ, Apel K (1982) The presence and synthesis of the NADPH: protochlorophyllide oxidoreductase in barley leaves with a high temperature-induced deficiency of plastid ribosomes. Planta 154:459–464

    CAS  Google Scholar 

  • Becker WM, Leaver CJ, Weir EM, Riezman H (1978) Regulation of glyoxysomal enzymes during germination of cucumber. I. Developmental changes in cotyledonary protein, RNA, and enzyme activities during germination. Plant Physiol 62:542–549

    PubMed  CAS  Google Scholar 

  • Bedbrook JR, Smith SM, Ellis RJ (1980) Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-l,5-bisphosphate carboxylase. Nature 287:692–697

    CAS  Google Scholar 

  • Beer NS, Griffiths WT (1981) Purification of the enzyme NADPH-protochlorophyllide oxidoreductase. Biochem J 195:83–92

    PubMed  CAS  Google Scholar 

  • Beevers H (1979) Microbodies in higher plants. Annu Rev Plant Physiol 30:159–193

    CAS  Google Scholar 

  • Bennett J (1981) Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem 118:61–70

    PubMed  CAS  Google Scholar 

  • Betsche T, Gerhardt B (1978) Apparent catalase synthesis in sunflower cotyledons during the change in microbody function. A mathematical approach for the quantitative evaluation of density-labeling data. Plant Physiol 62:590–597

    PubMed  CAS  Google Scholar 

  • Boardman NK (1966) Protochlorophyll. In: Vernon LP, Seely GR (eds) The chlorophylls. Academic Press, London New York, pp 437–476

    Google Scholar 

  • Boardman NK, Anderson JM (1978) Composition, structure and photochemical activity of developing and mature chloroplasts. In: Akoyunoglou G, Argyroudi-Akoyunoglou (eds) Chloroplast development. Elsevier North-Holland, New York, pp 1–14

    Google Scholar 

  • Boardman NK, Anderson JM, Goodchild DJ (1978) Chlorophyll-protein complexes and structure of mature and developing chloroplasts. Curr Top Bioenerg 8:35–109

    CAS  Google Scholar 

  • Böck P, Kramar R, Pavelka M (1980) Peroxisomes and related particles in animal tissues. Cell Biology Monographs Voi 7. Springer, Wien New York

    Google Scholar 

  • Bogorad L (1967) Biosynthesis and morphogenesis in plastids. In: Goodwin TW (ed) Biochemistry of chloroplasts. Academic Press, London New York, pp 615–631

    Google Scholar 

  • Bogorad L (1975) Evolution of organelles and eukaryotic genomes. Science 188:891–898

    PubMed  CAS  Google Scholar 

  • Bogorad L (1976) Chlorophyll biosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn, Vol 1. Academic Press, London New York, pp 64–148

    Google Scholar 

  • Bogorad L, Laber L, Gassman M (1967) Aspects of chloroplast development: Transitory pigment-protein complexes and protochlorophyllide regeneration. In: Shibata K, Takamiya A, Jagendorf AT, Fuller RC (eds) Comparative biochemistry and biophysics of photosynthesis. Univ Park Press, Baltimore, pp 299–312

    Google Scholar 

  • Bradbeer JW, Ireland HMM, Smith JW, Rest J, Edge HJW (1974a) Plastid development in primary leaves of Phaseolus vulgaris. VII. Development during growth in continuous darkness. New Phytol 73:263–270

    CAS  Google Scholar 

  • Bradbeer JW, Gyldenholm AO, Smith JW, Rest J, Edge HJW (1974b) Plastid development in primary leaves of Phaseolus vulgaris. IX. The effects of short light treatments on plastid development. New Phytol 73:281–290

    Google Scholar 

  • Breidenbach RW, Beevers H (1967) Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 27:462–469

    PubMed  CAS  Google Scholar 

  • Brown RH, Lord JM, Merrett MJ (1974) Fractionation of the proteins of plant microbodies. Biochem J 144:559–566

    PubMed  CAS  Google Scholar 

  • Brüning K, Drumm H, Mohr H (1975) On the role of phytochrome in controlling enzyme levels in plastids. Biochem Physiol Pflanz 168:141–156

    Google Scholar 

  • Burke JJ, Trelease RN (1975) Cytochemical demonstration of malate synthase and glycolate oxidase in microbodies of cucumber cotyledons. Plant Physiol 56:710–717

    PubMed  CAS  Google Scholar 

  • Castelfranco PA, Jones OTG (1975) Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol 55:485–490

    PubMed  CAS  Google Scholar 

  • Cedei TE, Roux SJ (1980a) Further characterization of the in vitro binding of phytochrome to a membrane fraction enriched for mitochondria. Plant Physiol 66:696–703

    Google Scholar 

  • Cedei TE, Roux SJ (1980b) Modulation of a mitochondrial function by oat phytochrome in vitro. Plant Physiol 66:704–769

    Google Scholar 

  • Chua NH, Schmidt GW (1978) Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-l,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75:6110–6114

    PubMed  CAS  Google Scholar 

  • Chua NH, Schmidt GW (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81:461–483

    PubMed  CAS  Google Scholar 

  • Coen D, Bedbrock JR, Bogorad L, Rich A (1977) Maize chloroplast DNA fragment encoding the large subunit of ribulosebisphosphate carboxylase. Proc Natl Acad Sci USA 74:5487–5491

    PubMed  CAS  Google Scholar 

  • Cohen RZ, Goodwin TW (1962) The effect of red and far-red light on carotenoid synthesis by etiolated maize seedlings. Phytochemistry 1:67–72

    CAS  Google Scholar 

  • Cooke RJ, Saunders PF (1975) Phytochrome-mediated changes in extractable gibberellin activity in a cell-free system from etiolated wheat leaves. Planta 123:299–302

    Google Scholar 

  • Cooke RJ, Kendrick RE (1976) Phytochrome controlled gibberellin metabolism in etioplast envelopes. Planta 131:303–307

    CAS  Google Scholar 

  • De Duve C (1965) Function of microbodies (peroxisomes). J Cell Biol 27:25A–26A

    Google Scholar 

  • Drumm H, Sch-pfer P (1974) Effect of phytochrome on development of catalase activity and isoenzyme pattern in mustard (Sinapis alba L.) seedlings. A reinvestigation. Planta 120:13–30

    CAS  Google Scholar 

  • Duggan J, Gassman ML (1974) Induction of porphyrin synthesis in etiolated bean leaves by chelators of iron. Plant Physiol 53:206–215

    PubMed  CAS  Google Scholar 

  • Ellis RJ (1977) Protein synthesis by isolated chloroplasts. Biochim Biophys Acta 463:185–215

    CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    CAS  Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: synthesis, transport and assembly. Annu Rev Plant Physiol 32:111–137

    CAS  Google Scholar 

  • Evans A, Smith H (1976) Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc Natl Acad Sci USA 73:138–142

    PubMed  CAS  Google Scholar 

  • Feierabend J (1975) Developmental studies on microbodies in wheat leaves. III. On the photocontrol of microbody development. Planta 123:63–77

    CAS  Google Scholar 

  • Feierabend J, Beevers H (1972a) Developmental studies on microbodies in wheat leaves. I. Conditions influencing enzyme development. Plant Physiol 49:28–32

    PubMed  CAS  Google Scholar 

  • Feierabend J, Beevers H (1972b) Developmental studies on microbodies in wheat leaves. II. Ontogeny of particulate enzyme associations. Plant Physiol 49:33–39

    PubMed  CAS  Google Scholar 

  • Feierabend J, Pirson A (1966) Die Wirkung des Lichts auf die Bildung von Photosynthe- seenzymen in Roggenkeimlingen. Z Pflanzenphysiol 55:235–245

    CAS  Google Scholar 

  • Fluhr R, Harel E, Klein S, Meller E (1975) Control of aminolevulinic acid and chlorophyll accumulation in greening maize leaves upon light-dark transitions. Plant Physiol 56:497–501

    PubMed  CAS  Google Scholar 

  • Ford MJ, Kasemir H (1980) Correlation between 5-aminolaevulinate accumulation and protochlorophyll photoconversion. Planta 50:206–210

    Google Scholar 

  • Franzisket U, Gerhardt B (1980) Synthesis of isocitrate lyase in sunflower cotyledons during the transition in cotyledonary microbody function. Plant Physiol 65:1081–1084

    PubMed  CAS  Google Scholar 

  • Frederick SE, Gruber PJ, Newcomb EH (1975) Plant Microbodies. Protoplasma 84:1–29

    CAS  Google Scholar 

  • Frevert J, Köller W, Kindl H (1980) Occurrence and biosynthesis of glyoxysomal enzymes in ripening cucumber seeds. Hoppe-Seyler’s Z Physiol Chem 361:1557–1565

    PubMed  CAS  Google Scholar 

  • Frosch S, Bergfeld R, Mohr H (1976) Light control of plastogenesis and ribulosebisphos- phate carboxylase levels in mustard seedlings cotyledons. Planta 133:53–56

    Google Scholar 

  • Gerhardt B (1973) Untersuchungen zur Funktionsänderung der Microbodies in den Kotyledonen von Helianthus annuus L. Planta 110:15–28

    CAS  Google Scholar 

  • Gerhardt B (1978) Microbodies/Peroxisomen pflanzlicher Zellen. Cell Biology Monographs Vol 5. Springer, Wien New York

    Google Scholar 

  • Goldman BM, Blobel G (1978) Biogenesis of peroxisomes: Intracellular site of synthesis of catalase and uricase. Proc Natl Acad Sci USA 75:5066–5070

    PubMed  CAS  Google Scholar 

  • Graham D, Grieve AM, Smillie RM (1968) Phytochrome as the primary photoregulator of the synthesis of Calvin cycle enzymes in etiolated pea seedlings. Nature 218:89–90

    CAS  Google Scholar 

  • Graham D, Hatch MD, Slack CR, Smillie RM (1970) Light-induced formation of enzymes of the C4-dicarboxylic acid pathway of photosynthesis in detached leaves. Phytochemistry 9:521–532

    CAS  Google Scholar 

  • Graham D, Grieve AM, Smillie RM (1971) Phytochrome-mediated plastid development in etiolated pea stem apices. Phytochemistry 10:2905–2914

    CAS  Google Scholar 

  • Granick S (1959) Magnesium prophyrin is formed in barley seedlings treated with delta- aminolevulinic acid. Plant Physiol Suppl 34:18

    Google Scholar 

  • Gressel J (1978) Light requirements for the enhanced synthesis of a plastid mRNA during Spirodela greening. Photochem Photobiol 27:167–169

    CAS  Google Scholar 

  • Griffiths WT (1974) Source of reducing equivalents for the in vitro synthesis of chlorophyll from protochlorophyll. FEBS Lett 46:301–304

    PubMed  CAS  Google Scholar 

  • Griffiths TW (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692

    PubMed  CAS  Google Scholar 

  • Grossman A, Bartlett S, Chua NH (1980) Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature 285:625–628

    CAS  Google Scholar 

  • Gruber PJ, Trelease RN, Becker WM, Newcomb EH (1970) A correlative ultrastructural and enzymatic study of cotyledonary microbodies following germination of fat-storing seeds. Planta 93:269–288

    CAS  Google Scholar 

  • Gruber PJ, Becker WM, Newcomb EH (1972) The occurrence of microbodies and peroxisomal enzymes in achlorophyllous leaves. Planta 105:114–138

    CAS  Google Scholar 

  • Gruber PJ, Becker WM, Newcomb EH (1973) The development of microbodies and peroxisomal enzymes in greening bean leaves. J Cell Biol 56:500–518

    PubMed  CAS  Google Scholar 

  • Hagemann R, Börner T (1978) Plastid-ribosome-deficient mutants of higher plants as a tool in studying chloroplast biogenesis. In: Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds) Chloroplast development. Elsevier North-Holland, Amsterdam, pp 709–720

    Google Scholar 

  • Hampp R, Wellburn AR (1979) Control of mitochondrial activities by phytochrome during greening. Planta 147:229–235

    CAS  Google Scholar 

  • Harel E (1978) Chlorophyll biosynthesis and its control. In: Reinhold L, Harbone JB, Swain T (eds) Progress in phytochemistry. Pergamon, New York, pp 127–180

    Google Scholar 

  • Haslett BG, Cammack R (1974) The development of plastocyanin in greening bean leaves. Biochem J 144:567–572

    PubMed  CAS  Google Scholar 

  • Hendry GAF, Stobbart AK (1978) The effect of haem on chlorophyll synthesis in barley leaves. Phytochemistry 17:73–77

    CAS  Google Scholar 

  • Highfield PE, Ellis RJ (1978) Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase. Nature 271:420–424

    CAS  Google Scholar 

  • Hock B (1969) Die Hemmung der Isocitrat-Lyase bei Wassermelonenkeimlingen durch Weißlicht. Planta 85:340–350

    CAS  Google Scholar 

  • Hock B, Mohr H (1964) Die Regulation der O2-Aufnahme von Senfkeimlingen (Sinapis alba L.) durch Licht. Planta 61:209–228

    CAS  Google Scholar 

  • Hong YN, Schopfer P (1980) Density of microbodies on sucrose gradients during phytochrome-mediated glyoxysome peroxisome transformation in cotyledons of mustard seedlings. Plant Physiol 66:194–196

    PubMed  CAS  Google Scholar 

  • Hong YN, Schopfer P (1981) Control by phytochrome of urate oxidase and allantoinase activities during peroxisome development in the cotyledons of mustard (Sinapis alba L.) seedlings. Planta 152:325–335

    CAS  Google Scholar 

  • Høyer-Hansen G, Simpson DJ (1977) Changes in the polypeptide composition of internal membranes of barley plastids during greening. Carlsberg Res Commun 42 :379–389

    Google Scholar 

  • Huang AHC, Beevers H (1971) Isolation of microbodies from plant tissues. Plant Physiol 48:637–641

    PubMed  CAS  Google Scholar 

  • Jabben M, Mohr H (1975) Stimulation of the Shibata shift by phytochrome in the cotyledons of the mustard seedling Sinapis alba L. Photochem Photobiol 22:59–61

    Google Scholar 

  • Jabben M, Masoner M, Kasemir H, Mohr H (1974) Phytochrome-stimulated regeneration of protochlorophyll in cotyledons of the mustard seedlings. Photochem Photobiol 20:233–239

    CAS  Google Scholar 

  • Jones CT (1980) Is there a glyoxylate cycle in the liver of the fetal guinea pig? Biochem Biophys Res Commun 95:849–856

    PubMed  CAS  Google Scholar 

  • Kagawa T, Beevers H (1975) The development of microbodies (glyoxysomes and leaf peroxisomes) in cotyledons of germinating watermelon seedlings. Plant Physiol 55:258–264

    PubMed  CAS  Google Scholar 

  • Kagawa T, McGregor DI, Beevers H (1973) Development of enzymes in the cotyledons of watermelon seedlings. Plant Physiol 51:66–71

    PubMed  CAS  Google Scholar 

  • Kawaga T, Lord JM, Beevers H (1975) Lecithin synthesis during microbody biogenesis in watermelon cotyledons. Arch Biochem Biophys 167:45–53

    Google Scholar 

  • Kannangara CG (1969) The formation of ribulose diphosphate carboxylase protein during chloroplast development in barley. Plant Physiol 44:1533–1537

    PubMed  CAS  Google Scholar 

  • Kannangara CG, Gough SP (1979) Biosynthesis of δ-aminolevulinate in greening barley leaves II: Induction of enzyme synthesis by light. Carlsberg Res Commun 44:11–20

    CAS  Google Scholar 

  • Karow H, Mohr H (1967) Aktivitätsänderungen der Isocitritase (EC 4.1.3.1.) während der Photomorphogenese beim Senfkeimling (Sinapis alba L.). Planta 72:170–186

    CAS  Google Scholar 

  • Kasemir H, Prehm G (1976) Control of chlorophyll synthesis by phytochrome. III. Does phytochrome regulate the chlorophyllide esterification in mustard seedlings? Planta 132:291–295

    CAS  Google Scholar 

  • Kasemir H, Oberdörfer U, Mohr H (1973) A twofold action of phytochrome in controlling chlorophyll a accumulation. Photochem Photobiol 18:481–486

    PubMed  CAS  Google Scholar 

  • Khan FR, McFadden BA (1980) Embryogenesis and the glyoxylate cycle. FEBS Lett 115:312–314

    CAS  Google Scholar 

  • Kindl H, Majunke G (1973) Glyoxysomale Enzyme in Laubblättern von Lens culinaris. Hoppe-Seyler’s Z Physiol Chem 354:999–1005

    PubMed  CAS  Google Scholar 

  • Kindl H, Koller W, Frevert J (1980a) Cytosolic precursor pools during glyoxysome biosynthesis. Hoppe-Seyler’s Z Physiol Chem 361:465–467

    PubMed  CAS  Google Scholar 

  • Kindl H, Schiefer S, Löffler HG (1980b) Occurrence and biosynthesis of catalase at different stages of seed maturation. Planta 148:199–207

    CAS  Google Scholar 

  • Kirk JTO (1974) The relation of chlorophyll synthesis to protein synthesis in the growing thylakoid membrane. Port Acta Biol Ser A 14:127–152

    CAS  Google Scholar 

  • Kirk JTO, Tilney-Bassett RAE (1978) The plastids. Their chemistry, structure, growth and inheritance, 2nd edn. Elsevier North-Holland, Amsterdam

    Google Scholar 

  • Klein AO (1969) Persistent photoreversibility of leaf development. Plant Physiol 44:897–902

    PubMed  CAS  Google Scholar 

  • Klein S, Pollok BM (1968) Cell fine structure of developing lima bean seeds related to seed desiccation. Am J Bot 55:658–672

    Google Scholar 

  • Klein WH, Price L, Mitrakos K (1963) Light-stimulated starch degradation in plastids and leaf morphogenesis. Photochem Photobiol 2:233–240

    CAS  Google Scholar 

  • Klein S, Katz E, Neeman E (1977) Induction of δ-aminolevulinic acid formation in etiolated maize leaves controlled by two light systems. Plant Physiol 60:335–338

    PubMed  CAS  Google Scholar 

  • Kleinkopf GE, Huffaker RC, Matheson A (1970) Light-induced de novo synthesis of ribulose 1,5-diphosphate carboxylase in greening leaves of barley. Plant Physiol 46:416–418

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Asami S, Akazawa T (1980) Development of enzymes involved in photosynthetic carbon assimilation in greening seedlings of maize (Zea mays). Plant Physiol 65:198–203

    PubMed  CAS  Google Scholar 

  • Köller W, Kindl H (1978) Studies supporting the concept of glyoxyperoxisomes as intermediary organelles in transformation of glyoxysomes into peroxisomes. Z Naturforsch 33c:962–968

    Google Scholar 

  • Köller W, Kindl H (1980) 19 S cytosolic malate synthase. A small pool characterized by rapid turnover. Hoppe Seyler’s Z Physiol Chem 361:1437–1444

    PubMed  Google Scholar 

  • Kollöffel C (1970) Oxidative and phosphorylative activity of mitochondria from pea cotyledons during maturation of the seed. Planta 91:321–328

    Google Scholar 

  • Koski VM, French SL, Smith FHC (1951) The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino corn seedlings. Arch Biochem Biophys 31:1–17

    PubMed  CAS  Google Scholar 

  • Kruse C, Frevert J, Kindl H (1981) Selective uptake by glyoxysomes of in vitro translated malate synthase. FEBS-Lett 129 :36–38

    CAS  Google Scholar 

  • Kung SD, Thornber JP, Wildman SG (1972) Nuclear DNA codes for the photosystem II chlorophyll-protein of chloroplast membranes. FEBS Lett 24:185–188

    PubMed  CAS  Google Scholar 

  • Lado P, Schwendimann M, Marrè E (1968) Repression of isocitrate lyase synthesis in seeds germinated in the presence of glucose. Biochim Biophys Acta 157:140–148

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Kleudgen HK (1975) Phytochromsystem und Lipochinonsynthese in den Plastiden etiolierter Hordeum-Keimlinge. Z Naturforsch 30c: 64–66

    CAS  Google Scholar 

  • Link G (1981) Enhanced expression of a distinct plastid DNA region in mustard seedlings by continuous far-red light. Planta 152:379–380

    CAS  Google Scholar 

  • Link G (1982) Phytochrome control of plastid mRNA in mustard (Sinapis alba L.). Planta 154:81–86

    CAS  Google Scholar 

  • Lord JM, Bowden L (1978) Evidence that glyoxysomal malate synthase is segregated by the endoplasmic reticulum. Plant Physiol 61:266–270

    PubMed  CAS  Google Scholar 

  • Lütz C (1978) Separation and comparison of prolamellar bodies and prothylakoids of etioplasts from Avena sativa L. In: Akoyunoglou G (ed) Chloroplast development. Elsevier North-Holland, Amsterdam, pp 481–488

    Google Scholar 

  • Machold O, Aurich O (1972) Sites of synthesis of chloroplast lamellar proteins in Vicia faba. Biochim Biophys Acta 281:103–112

    PubMed  CAS  Google Scholar 

  • Malhotra SS, Spencer M (1973) Structural development during germination of different populations of mitochondria from pea cotyledons. Plant Physiol 52:575–579

    PubMed  CAS  Google Scholar 

  • Malnoe P, Rochaix JD, Chua NH, Spahr PF (1979) Characterization of the gene and messenger RNA of the large subunit of ribulose 1,5-diphosphate carboxylase in Chlamydomonas reinhardii. J Mol Biol 133:417–434

    PubMed  CAS  Google Scholar 

  • Manabe K, Furuya M (1973) A rapid phytochrome-dependent reduction of nicotinamide adenine dinucleotide phosphate in particle fraction from etiolated bean hypocotyl. Plant Physiol 51:982–983

    PubMed  CAS  Google Scholar 

  • Manabe K, Furuya M (1974) Phytochrome-dependent reduction of nicotinamide nucleotides in the mitochondrial fraction isolated from etiolated pea epicotyls. Plant Physiol 53:343–347

    PubMed  CAS  Google Scholar 

  • Manabe K, Furuya M (1975) Experimentally induced binding of phytochrome to mitochondrial and microsomal fractions in etiolated pea shoots. Planta 123:207–215

    Google Scholar 

  • Mapleston RE, Griffiths WT (1980) Light modulation of the activity of protochlorophyllide reductase. Biochem J 189:125–133

    PubMed  CAS  Google Scholar 

  • Marcus A (1960) Photocontrol of formation of red kidney bean leaf triphosphopyridine nucleotide linked triosephosphate dehydrogenase. Plant Physiol 35:126–128

    PubMed  CAS  Google Scholar 

  • Markwell JP, Thornber JP, Boogs RT (1979) Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc Natl Acad Sci USA 76:1233–1235

    PubMed  CAS  Google Scholar 

  • Masoner M, Kasemir H (1975) Control of chlorophyll synthesis by phytochrome. I. The effect of phytochrome on the formation of 5-aminolevulinate in mustard seedlings. Planta 126:111–117

    CAS  Google Scholar 

  • Mego JL, Jagendorf AT (1961) Effect of light on growth of black valentine bean plastids. Biochim Biophys Acta 53:237–254

    PubMed  CAS  Google Scholar 

  • Mettler IJ, Beevers H (1980) Oxidation of NADH in glyoxysomes by a malate-aspartate shuttle. Plant Physiol 66:555–560

    PubMed  CAS  Google Scholar 

  • Mohr H (1977) Phytochrome and chloroplast development. Endeavour, New Ser 1:107–114

    CAS  Google Scholar 

  • Mohr H (1983) Phytochrome and chloroplast development. In: Barber J, Baker NR (eds) Topics in photosynthesis Vol. 5. Elsevier, Amsterdam (in press)

    Google Scholar 

  • Mohr H, Drumm H, Kasemir H (1974) Licht und Farbstoffe. Ber Dtsch Bot Ges 87:49–69

    CAS  Google Scholar 

  • Morisset C (1973) Comportement des racines isolées de Lycopersicum esculentum (Solanacées) cultivées in vitro et soumises à l’anoxie. CR Acad Sci (Paris) Sér D, 276:311–314

    Google Scholar 

  • Morisset C (1974) Variations ultrastructurales comparées des mitochondries dans des racines de Lycopersicum esculentum Mill. (Solancées), isolées, cultivées in vitro et soumises à divers traitements: anoxie prolongée, agent découplant, plasmolyse. CR Acad Sci (Paris) Ser D, 279:1257–1260

    Google Scholar 

  • Murray DR, Wara-Aswapati, O, Ireland MM, Bradbeer JW (1973) The development of activities of some enzymes concerned with glycolate metabolism in greening bean leaves. J Exp Bot 24:175–184

    CAS  Google Scholar 

  • Nadler K, Granick S (1970) Controls on chlorophyll synthesis in barley. Plant Physiol 46:240–246

    PubMed  CAS  Google Scholar 

  • Oelze-Karow H, Mohr H (1978a) Control of chlorophyll b biosynthesis by phytochrome. Photochem Photobiol 27:189–193

    CAS  Google Scholar 

  • Oelze-Karow H, Mohr H (1978b) Phytochrome control of the development of photo- phosphorylation. Photochem Photobiol 27:255–258

    CAS  Google Scholar 

  • Ogawa T, Inoue V, Kitajina M, Shibata K (1973) Action spectra for biosynthesis of chlorophylls a and b and β-carotene. Photochem Photobiol 18:229–235

    CAS  Google Scholar 

  • Öpik H (1974) Mitochondria. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, New York, pp 52–83

    Google Scholar 

  • Price L, Klein WH (1961) Red, far-red response and chlorophyll synthesis. Plant Physiol 36:733–735

    PubMed  CAS  Google Scholar 

  • Queiroz O (1969) Photopériodisme et activité enzymatique (PEP carboxylase et enzyme malique) dans les feuilles de Kalanchoë blossfeldiana. Phytochemistry 8:1655–1663

    CAS  Google Scholar 

  • Richter G, Dirks W (1978) Blue-light-induced development of chloroplasts in isolated seedling roots. Preferential synthesis of chloroplast ribosomal RNA species. Photochem Photobiol 27:155–160

    CAS  Google Scholar 

  • Riezman H, Becker WM (1980) Post-translational processing of glyoxysomal enzymes. Plant Physiol Suppl 65:32

    Google Scholar 

  • Riezman H, Weir EM, Leaver CJ, Titus DE, Becker WM (1980) Regulation of glyoxysomal enzymes during germination of cucumber. 3. In vitro translation and characterization of four glyoxysomal enzymes. Plant Physiol 65:40–46

    PubMed  CAS  Google Scholar 

  • Santel HJ, Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 120:95–103

    PubMed  CAS  Google Scholar 

  • Schatz G (1970) Biogenesis of mitochondria. In: Racker E (ed) Membranes of mitochondria and chloroplasts. Van Nostrand, New York, pp 251–314

    Google Scholar 

  • Schatz G (1979) How mitochondria import proteins from the cytoplasm. FEBS Lett 103:203–211

    PubMed  CAS  Google Scholar 

  • Schiff JA (1978) Photocontrol of chloroplast development in Euglena. In: Akoyunoglou G, Argyroudi-Akoyunoglou (eds) Chloroplast development. Elsevier North-Holland, Amsterdam, pp 747–768

    Google Scholar 

  • Schmidt GW, Bartlett S, Grossman AR, Cashmore AR, Chua NH (1980) In vitro synthesis, transport, and assembly of the constituent polypeptides of the light-harvesting chlorophyll a/b protein complex. In: Leaver CJ (ed) Genome organization and expression in plants. NATO ASI Ser A: Life Sci Vol 29. Plenum, New York London, pp 337–351

    Google Scholar 

  • Schmidt HW, Hampp R (1977) Regulation of membrane properties of mitochondria and plastids during chloroplast development. II. The action of phytochrome in a cell-free system. Z Pflanzenphys 82:428–434

    CAS  Google Scholar 

  • Schnarrenberger C, Mohr H (1970) Carotenoid synthesis in mustard seedlings as controlled by phytochrome and inhibitors. Planta 94:296–307

    CAS  Google Scholar 

  • Schnarrenberger C, Oeser A, Tolbert NE (1971) Development of microbodies in sunflower cotyledons and castor bean endosperm during germination. Plant Physiol 48:566–574

    PubMed  CAS  Google Scholar 

  • Schneider HAW (1973) Regulation der Chlorophyllbiosynthese. Licht- und entwicklungsbedingte Aktivitätsveränderungen von vier aufeinanderfolgenden Enzymen der Porphyrin- und Chlorophyllbiosynthesekette. Z Naturforsch 28c: 45–58

    Google Scholar 

  • Schneider HAW (1975) Chlorophylle: Aspekte der Biosynthese und ihrer Regulation. Ber Dtsch Bot Ges 88:83–123

    CAS  Google Scholar 

  • Schopfer P (1977) Phytochrome control of enzymes. Annu Rev Plant Physiol 28:223–252

    CAS  Google Scholar 

  • Schopfer P, Bajracharya D, Falk H, Thien W (1975) Phytochrom-gesteuerte Entwicklung von Zellorganellen (Plastiden, Microbodies, Mitochondrien). Ber Dtsch Bot Ges 88:245–268

    CAS  Google Scholar 

  • Schopfer P, Bajracharya D, Bergfeld R, Falk H (1976) Phytochrome-mediated transformation of glyoxysomes into peroxisomes in the cotyledons of mustard (Sinapis alba L.) seedlings. Planta 133:73–80

    Google Scholar 

  • Sisler EC, Klein WH (1963) The effect of age and various chemicals on the lag phase of chlorophyll synthesis in dark grown bean seedlings. Physiol Plant 16:315–322

    CAS  Google Scholar 

  • Smillie RM, Scott NS (1969) Organelle biosynthesis: The chloroplast. Progress in molecular and subcellular biology Vol 1. Springer, Berlin Heidelberg New York, pp 137–202

    Google Scholar 

  • Smith MA, Criddle RS, Peterson L, Huffaker RC (1974) Synthesis and assembly of ribulosebisphosphate carboxylase enzyme during greening of barley plants. Arch Biochem Biophys 165:494–504

    PubMed  CAS  Google Scholar 

  • Smith SM, Ellis RJ (1981) Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulosebisphosphate carboxylase. J Mol Appl Genet 1:127–137

    PubMed  CAS  Google Scholar 

  • Sundqvist C (1978) Red light stimulated accumulation of protochlorophyllide in dark- grown leaves treated with δ-aminolevulinic acid. Plant Sci Lett 12:69–76

    CAS  Google Scholar 

  • Theimer RR, Theimer E (1975) Studies on the development and localization of catalase and H2O2-generating oxidases in the endosperm of germinating castor beans. Plant Physiol 56:100–104

    PubMed  CAS  Google Scholar 

  • Thien W, Schopfer P (1975) Control by phytochrome of cytoplasmic and plastid rRNA accumulation in the cotyledons of mustard seedlings in the absence of photosynthesis. Plant Physiol 56:660–664

    PubMed  CAS  Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins : Light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158

    CAS  Google Scholar 

  • Thronber JP, Highkin HR (1974) Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur J Biochem 41:109–116

    Google Scholar 

  • Tobin EM (1978) Light regulation of specific mRNA species in Lemna gibba L. G-3. Proc Natl Acad Sci USA 75:4749–4753

    PubMed  CAS  Google Scholar 

  • Tobin EM (1981) Phytochrome-mediated regulation of messenger RNAs for the small subunit of ribulose 1,5-bisphosphate carboxylase and the light-harvesting chlorophyll a/b protein in Lemna gibba. Plant Molecular Biology 1:35–51

    CAS  Google Scholar 

  • Tolbert NE, Oeser A, Kisaki T, Hageman RH, Yamazaki RK (1968) Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J Biol Chem 243:5179–5184

    PubMed  CAS  Google Scholar 

  • Tomomatsu A, Asahi T (1978) Non-synchronous increases in activities of peroxisomal enzymes in etiolated mung bean seedling leaves after illumination. Plant Cell Physiol 19:183–188

    CAS  Google Scholar 

  • Trelease RN, Becker WM, Gruber PJ, Newcomb EH (1971) Microbodies (glyoxysomes and peroxysomes) in cucumber cotyledons. Plant Physiol 48:461–475

    PubMed  CAS  Google Scholar 

  • Unser G, Masoner M (1972) Kinetics of monogalactosyltransferase in mustard seedlings. Naturwissenschaften 59:39

    CAS  Google Scholar 

  • Unser G, Mohr H (1970) Phytochrome-mediated increase of galactolipids in mustard seedlings. Naturwissenschaften 57:358–359

    CAS  Google Scholar 

  • Vesk M, Jeffrey SW (1977) Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J Phycol 13:280–288

    CAS  Google Scholar 

  • Virgin HJ (1972) Chlorophyll biosynthesis and phytochrome action. In: Mitrakos K, Shropshire W (eds) Phytochrome. Academic Press, London New York, pp 371–404

    Google Scholar 

  • Van Poucke M, Barthe F (1970) Induction of glycollate oxidase activity in mustard seedlings under the influence of continuous irradiation with red and far-red light. Planta 94:308–318

    Google Scholar 

  • Van Poucke M, Cerff R, Barthe F, Mohr H (1970) Simultaneous induction of glycolate oxidase and glyoxylate reductase in white mustard seedlings by phytochrome. Naturwissenschaften 56:132–133

    Google Scholar 

  • Vartapetian BB, Andreeva IN, Kozlova GI, Agapova LP (1977) Mitochondrial ultrastructure in roots of mesophyte and hydrophyte at anoxia and after glucose feeding. Protoplasma 91:243–256

    Google Scholar 

  • Walk, RA, Hock B (1978) Cell-free synthesis of glyoxysomal malate dehydrogenase. Biochem Biophys Res Commun 81:636–643

    PubMed  CAS  Google Scholar 

  • Weir EM, Riezman H, Grienenberger JM, Becker WM, Leaver CJ (1981) Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase. Eur J Biochem 112:469–477

    Google Scholar 

  • Weischet W (1971) cited in Friederich KE, Mohr H (1975) Adenosine 5′-triphosphate content and energy charge during photomorphogenesis of the mustard seedling Sinapis alba L. Photochem Photobiol 22:49–53

    Google Scholar 

  • Withrow RB, Wolff JB, Price L (1956) Elimination of the lag phase of chlorophyll synthesis in dark-grown bean leaves by a pretreatment with low irradiances of monochromatic energy. Plant Physiol Suppl 31:13–14

    Google Scholar 

  • Zimmermann R, Neupert W (1980) Biogenesis of glyoxysomes. Synthesis and intracellular transfer of isocitrate lyase. Eur J Biochem 112:225–233

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schopfer, P., Apel, K. (1983). Intracellular Photomorphogenesis. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics