Skip to main content

Biosynthesis of the Collagen-like C1q Molecule and its Receptor Functions for Fc and Polyanionic Molecules on Macrophages

  • Chapter
Current Topics in Microbiology and Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 102))

Abstract

At the beginning of the nineteenth century, knowledge of immunity was limited to a few practical methods based on empirical observations, e.g., the observation by Jenner in 1798 that inoculation with cowpox material induced an immunity to smallpox. The discoveries by Louis Pasteur and Robert Koch that microorganisms caused fermentations and were responsible for a number of infectious diseases, greatly advanced the concepts of susceptibility and immunity in a limited number of diseases. In the late nineteenth century, the complement system was discovered by Fodor(1887), Nuttall(1888), and Buchner (1889a, b) through studying the bactericidal action of blood serum. It was recognized that killing of bacteria in fresh serum required at least two different substances: a heat-stable (30 min, 56 °C) factor, today known to be the antibody specific for the particular microorganism; and a heat-labile factor, which was normally present in each serum. This factor was at first termed “alexine” (Buchner 1889a, b) and later designated “complement” (Pfeiffer and Issaeff 1894; Bordet 1896). On 18 May 1889, Buchner made the following Statement at a lecture in Munich: “Das Vorhandensein bakterienfeindlicher Wirkungen durch flüssige Bestandthile der Körpersäfte lässt die überall nachweisbare Thätigkeit der Phagozyten als weniger ausschlaggebend erkennen” (The presence of bactericidal action in body fluids reveals the overall detectable activity of phagocytes as less decisive). This statement by the chief advocate of the humoral theory of resistance to microbial infections was directed against the cellular theory of immunity proposed by Metchnikoff. In his answer to Buchner’s critique, Metchnikoff (1889; English translation 1905) came to the conclusion, based on his own work, that “the postulates of this theory are often not in accord with the real facts,” and that the bactericidal effect of body fluids has nothing in common with the phenomenon of immunity („la propriété bactéricide des humeurs ne correspond nullement aux phénomènes de l’immunité“).

Alexine is nothing but a leucocytic product

Elie Metchnikoff, 1905

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ATEe:

N-acetyl-L-tyrosine ethyl ester

Con A:

concanavalin A

CRP:

C-reactive protein

C1 INH:

C1 inhibitor

DEAE:

diethylaminoethyl

DFP:

diisopropyl fluorophosphate

DNP:

dinitrophenyl

DNP-HSA:

dinitrophenylated human serum albumin

DS:

dextran sulfate

EDTA:

ethylenediaminetetraacetate

E-TNP:

trinitrophenylated erythrocyte

FCS:

fetal calf serum

FITC:

fluorescein isothioeyanate

GPS:

guinea pig serum

HSA:

human serum albumin

Ig:

immunoglobulin

LPS:

bacterial-derived lipopolysaccharide

M 199:

medium 199

NaCl:

sodium chloride

NPGB:

p-nitrophenyl-p′ -guanidinobenzoate

PA:

polyanion

PBS:

phosphate-buffered saline

PS:

ant venom-derived polysaccharide

RB 200:

lissamine rhodamine B

Sp54:

pentosan polysulfo ester

PVS:

polyvinyl sulfate

SDS PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SRBC:

sheep red blood cell

TAMe:

N-tosyl-L-arginine methyl ester

TNP:

trinitrophenyl

References

  • Agnello V, Winchester RJ, Kunkel HG (1970) Preeipitin reactions of the Clq component of complement with aggregated γ-globulin and immune complexes in gel diffusion. Immunology 19: 909–919

    PubMed  CAS  Google Scholar 

  • Al-Adnani MS, McGee JO’D (1976) Clq production and secretion by fìbroblasts. Nature 263: 145–146

    PubMed  CAS  Google Scholar 

  • Almeda S, Rosenberg RD, Bing DH (to be published) The binding properties of human complement component Clq; interaction with mueopolysaccharides. J Biol Chem

    Google Scholar 

  • Andrews JM, Baillie RD (1979) The enzymatic nature of human Or: a subcomponent of the first component of complement. J Immunol 123:1403–1408

    PubMed  CAS  Google Scholar 

  • Arlaud GJ, Meyer CM, Colomb MG (1976) Use of an IgG fragment prepared with particulate plasmin to study the Cl binding and activation. FEBS Lett 66:132–136

    PubMed  CAS  Google Scholar 

  • Arlaud G, Reboul A, Colomb MG (1977a) Proenzymic Cls associated with catalytic amounts of Clr. Study of the activation process. Biochim Biophys Acta 485:227–235

    CAS  Google Scholar 

  • Arlaud GJ, Reboul A, Meyer CM, Colomb MG (1977b) Purification of proenzymic and activated human Cls free of Clr. Effects of calcium and ionic strength on activated Cls. Biochim Biophys Acta 458:215–226

    Google Scholar 

  • Arlaud GJ, Sim RB, Duplaa AM, Colomb MG (1979) Differential elution of Clq2 Clr and Cls from human Cl bond to immune aggregates. Use in the rapid purification of Cl subcomponents. Mol Immunol 16:445–450

    PubMed  CAS  Google Scholar 

  • Asofsky R, Thorbecke GJ (1961) Sites of formation of immune globulins and of a component of C 3. J Exp Med 114:471–483

    PubMed  CAS  Google Scholar 

  • Assimeh SN, Bing DH, Painter RH (1974) A simple method for the isolation of the subcomponents of the first component of complement by affinity chromatography. J Immunol 113:225–234

    PubMed  CAS  Google Scholar 

  • Assimeh SN, Chapuis RM, Isliker H (1978) Studies on the precursor form of the first component of complement. II. Proteolytic fragmentation of Clr. Immunochemistry 15:13–17

    PubMed  CAS  Google Scholar 

  • Augener W, Grey HM, Cooper NR, Müller-Eberhard HJ (1971) The reaction of monomeric and aggregated immunoglobulins with Cl. Immunochemistry 8:1011–1020

    PubMed  CAS  Google Scholar 

  • Bartholomew RM, Esser AF (1980) Mechanism of antibody-independent activation of the first component of complement (Cl) on retrovirus membranes. Biochemistry 19:2847–2853

    PubMed  CAS  Google Scholar 

  • Bartholomew RM, Esser AF, Müller-Eberhard HJ (1978) Lysis of oncornaviruses by human serum. Isolation of the viral complement (Cl) receptor and identification as pl5E. J Exp Med 147: 844–853

    PubMed  CAS  Google Scholar 

  • Becker EL (1956) Concerning the mechanism of complement action. I. Inhibition of complement activity by diisopropyl fluophosphate. J Immunol 77:462–468

    PubMed  CAS  Google Scholar 

  • Becker EL (1967) The relationship of the structure of phosphonate esters to their ability to inhibit chymotrypsin, trypsin, acetylcholinesterase, and C la. Biochim Biophys Acta 147:289–296

    PubMed  CAS  Google Scholar 

  • Becker EL, Austen KF (1964) A comparison of the specificity of inhibition by phosphonate esters of the first component of complement and the antigen-induced release of histamine from guinea pig lung. J Exp Med 120:491–506

    PubMed  CAS  Google Scholar 

  • Bentley C, Zimmer B, Hadding U (1981) The macrophage as a source of complement components. In: Pick E (ed) Lymphokines 4. Academic Press, New York, pp 197–230

    Google Scholar 

  • Berkel AI, Loos M, Sanal Ö, Mauff G, Güngen Y, Örs Ü, Ersoy F, Yegin O (1979) Clinical and immunological studies in a case of selective complete Clq deficiency. Clin Exp Immunol 38:52–63

    PubMed  CAS  Google Scholar 

  • Berkel AI, Loos M, Sanal Ö, Ersoy F, Yegin O (1981) Selective complete Clq deficiency. Report of two new cases. Immunol Lett 2:263–267

    Google Scholar 

  • Betz S,Isliker H (1981) Antibody-independent interactions between Escherichia Coli J5 and human complement components. J Immunol 127:1748–1754

    PubMed  CAS  Google Scholar 

  • Betz S, Page N, Estrade C, Isliker H (1982) The effect of specific antibody on antibody-independent interactions between E. coli J5 and human complement. J Immunol 128:707–711

    PubMed  CAS  Google Scholar 

  • Bing DH (1969) Nature of the active site of a subunit of the first component of human complement. Biochemistry 8:4503–4510

    PubMed  CAS  Google Scholar 

  • Bing DH (1971) Purification of the first component of human complement by affinity chromatography on human γ-globulin linked to sepharose. J Immunol 107:1243–1249

    PubMed  CAS  Google Scholar 

  • Bing DH, Spurlock E, Bern MM (1975) Synthesis of the first component of complement by primary cultures of human tumors of the colon and urogenital tract and comparable normal tissue. Clin Exp Immunol 4:341–351

    CAS  Google Scholar 

  • Bing DH, Andrews JM, Morris KM, Cole E, Irish V (1980) Purification of subcomponent Clq, Clr, and Cls of the first component of complement from Cohn fraction I by affinity chromatography. rep Biochem 10:269–296

    CAS  Google Scholar 

  • Bing DH, Almeda S, Isliker H, Lhav J, Hynes RO (to be published) Fibronectin binds to the Clq component of complement. Proc Natl Acad Sci USA Bloksma N, Reuver de MJ, Willers JMN (1980) Influence on maerophage functions as a possible basis of immunomodification by polyanions. Ann Immunol (Paris) 131D:225–265

    Google Scholar 

  • Bon S, Massoulie J (1978) Collagenase sensitivity and aggregation properties of Electrophorus acetylcholinesterase. Eur J Biochem 89:89–94

    PubMed  CAS  Google Scholar 

  • Bon S, Cartaud J, Massoulie J (1978) The dependence of acetylcholinesterase aggregation at low ionic strength upon a polyanionic component. Eur J Biochem 85:1–14

    PubMed  CAS  Google Scholar 

  • Bordet J (1896) Sur le mode d’action des sérums préventifs. Ann Immunol, Paris 10:193–219

    Google Scholar 

  • Borsos T, Rapp HJ (1965a) Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150:505–506

    PubMed  CAS  Google Scholar 

  • Borsos T, Rapp HJ (1965b) Hemolysin titration based on fixation of the activated first component of complement: Evidence that one molecule of hemolysin suffices to sensitize an erythrocyte. J Immunol 95:559–566

    PubMed  CAS  Google Scholar 

  • Borsos T, Rapp HJ, Mayer MM (1961) Studies on the second component of complement. I. The reaction between EAC’ 1,4 and C2: Evidence on the single site mechanism of immune hemolysis and determination of C 2 on a molecular basis. J Immunol 87:310–325

    CAS  Google Scholar 

  • Borsos T, Rapp HJ, Walz UL (1964) Action of the first component of complement. Activation of C 1 to C’ la in the hemolytic system. J Immunol 92:108–112

    PubMed  CAS  Google Scholar 

  • Borsos T, Rapp HJ, Crisler C (1965) The interaction between carrageenan and the first component of complement. J Immunol 94:662–666

    PubMed  CAS  Google Scholar 

  • Borsos T, Loos M, Chapuis RM, Medicus R, Isliker H (1980) A novel way of relating the structure of Clq to the hemolytic activity of the first component of complement Mol Immunol 17: 1415–1421

    PubMed  CAS  Google Scholar 

  • Brade V, Bentley C (1980) Synthesis and release of complement components by macrophages. In: van Furth R (ed) Molecular Phagocytes. Martinus Nijhoff Publ, pp 1385–1413

    Google Scholar 

  • Bredt W, Wellek B, Brunner H, Loos M (1977) Interactions between Mycoplasma pneumoniae and the first component of complement. Infect Immunity 15:7–12

    CAS  Google Scholar 

  • Bubb MO, Conradie JD (1976) The importance of quaternary structure in the expression of the Cl-binding site of IgM. Immunology 31:893–902

    PubMed  CAS  Google Scholar 

  • Buchner H (1889a) Über die nähere Natur der bakterientötenden Substanz im Blutserum. Zentralbl Bakteriol 6:561–565

    Google Scholar 

  • Buchner H (1889b) Über die bakterientötende Wirkung des zellfreien Blutserums. Zentralbl Bakteriol 5:817–823

    Google Scholar 

  • Budzko DB, Müller-Eberhard HJ (1970) Cleavage of the fourth component of human complement (C4) by Cl-esterase: Isolation and characterization of the low molecular weight product. Immunochemistry 7:227–234

    PubMed  CAS  Google Scholar 

  • Burger R, Loos M, Kossorotow A, Hadding U, Bitter-Suermann D (1977) Dual function of insoluble polyanions. In: Kallos P et al. (eds) Monographs in allergy. Karger, Basel, 12:78–81

    Google Scholar 

  • Burton DR, Boyd J, Brampton AD, Easterbrook-Smith SB, Emanuel EJ, Novotny J, Rademacher TW, van Schravendijk MR, Sternberg MJE, Dwek RA (1980) The Clq receptor site on immunoglobulin G. Nature 288:338–344

    PubMed  CAS  Google Scholar 

  • Calcott MA, Müller-Eberhard HJ (1972) Clq protein of human complement. Biochemistry 11: 3443–3450

    PubMed  CAS  Google Scholar 

  • Chapuis RM, Isliker H, Assimeh SN (1977) Studies on the precursor form of the first component of complement. I. Isolation of the proenzyme forms of Clr and Cls. Immunochemistry 14: 313–317

    PubMed  CAS  Google Scholar 

  • Circolo A, Borsos T (1982) Lysis of hapten-labeled cells by anti-hapten IgG and complement: Effect of cell surface hapten density. J Immunol 128:1118–1121

    PubMed  CAS  Google Scholar 

  • Clas F, Loos M (1980) Killing of the S and Re forms of Salmonella minnesota via the classical pathway of complement activation in guinea pig and human sera. Immunology 40:547–556

    PubMed  CAS  Google Scholar 

  • Clas F, Loos M (1981) Antibody-independent binding of the first component of complement (Cl) and its subcomponent Clq to the S-and Re-forms of Salmonella minnesota. Infect Immun 41:1138–1144

    Google Scholar 

  • Clas F, Loos M (1982) The role of components of the outer membrane of gram-negative bacteria in the serum-bactericidal effect. In: Peters H (ed) Protides of the Biological Fluids. Pergamon Press, Oxford U.K., vol. 29, pp 317–320

    Google Scholar 

  • Claus DR, Siegel J, Petras K, Osmand AP, Gewürz H (1977) Interactions of C-reactive protein with the first component of human complement. J Immunol 119:187–192 Colten HR (1972a) In vitro synthesis of a regulator of mammalian gene expressioa Proc Natl Acad Sci 69:2233–2236

    PubMed  CAS  Google Scholar 

  • Colten HR (1972b) Ontogeny of the human complement system: In vitro biosynthesis of individual complement components by fetal tissues. J Clin Invest 51:725–730

    PubMed  CAS  Google Scholar 

  • Colten HR (1976) Biosynthesis of complement Adv Immunol 22:67–118

    CAS  Google Scholar 

  • Colten HR, Wyatt HV (1972) Biosynthesis of serum complement In: Ingram DG (ed) Biological activities of complement Karger, Basel, pp 244–255

    Google Scholar 

  • Colten HR, Borsos T, Rapp HJ (1966) In vitro synthesis of the first component of complement by guinea pig small intestine. Proc Natl Acad Sci 56:1158–1163

    PubMed  CAS  Google Scholar 

  • Colten HR, Borsos T, Rapp HJ (1967) Efficiency of the first component of complement (C1) in the hemolytic reaction. Science 158:1590–1592

    PubMed  CAS  Google Scholar 

  • Colten HR, Borsos T, Rapp HJ (1968a) Ultracentrifugation of the first component of complement: effects of ionic strength. J Immunol 100:808–813

    PubMed  CAS  Google Scholar 

  • Colten HR, Borsos T, Rapp HJ (1968b) Reversible loss of activity of the first component of complement (C1) as a function of ionic strength. J Immunol 100:799–807

    PubMed  CAS  Google Scholar 

  • Colten HR, Gordon JM, Rapp HJ, Borsos T (1968c) Synthesis of the first component of guinea pig complement by columnar epithelial cells of the small intestine. J Immunol 100:788–792

    PubMed  CAS  Google Scholar 

  • Colten HR, Gordon JM, Borsos T, Rapp JH (1968d) Synthesis of the first component of human complement in vitro. J Exp Med 128:595–604

    PubMed  CAS  Google Scholar 

  • Colten HR, Silverstein AH, Borsos T, Rapp HJ (1968e) Ontogeny of the first component of sheep complement. Immunology 15:459–461

    PubMed  CAS  Google Scholar 

  • Conradie JD, Volanakis JE, Stroud RM (1975) Evidence for a serum inhibitor of Clq. Immuno-chemistry 12:967–971

    CAS  Google Scholar 

  • Cooper NR, Morrison DC (1978) Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J Immunol 120:1862–1868

    PubMed  CAS  Google Scholar 

  • Cooper NR, Jensen FC, Welsh RM, Oldstone MBA (1976) Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med 144:970–984

    PubMed  CAS  Google Scholar 

  • Csákó G, Suba EA, Herp A (1981) Similarities and dissimilarities between the binding ability of Clq and collagen. Clin Exp Immunol 44:181–190

    PubMed  Google Scholar 

  • Day NK, Gewurz H, Pickering PJ, Good RA (1970) Ontogenetic Development of Clq synthesis in the piglet J Immunol 104:1316–1319

    PubMed  CAS  Google Scholar 

  • Day NK, Geiger H, Stroud RM, De Bracco ME, Mancado B, Windhorst D, Good RA (1972) Clr deficiency: An inborn error associated with cutaneous and renal disease. J Clin Invest 51: 1102–1108

    PubMed  CAS  Google Scholar 

  • DeBracco MME, Stroud RM (1971) Clr, subunit of the first complement component: Purification, properties, and assay based on its linking role. J Clin Invest 50:838–848

    CAS  Google Scholar 

  • Dickler HB (1976) Lymphocyte receptors for immunoglobulin. Adv Immunol 24:167–215

    PubMed  CAS  Google Scholar 

  • Dodds AW, Sim RB, Porter RP, Kerr MA (1978) Activation of the first component of human complement (Cl) by antibody-antigen aggregates. Biochem J 175:383–390

    PubMed  CAS  Google Scholar 

  • Einstein LP, Schneeberger EE, Colten HR (1976) Synthesis of the second component of complement by long-term primary cultures of human monocytes. J Exp Med 143:114–126

    PubMed  CAS  Google Scholar 

  • Fessler LI, Fessler JH (1974) Protein assembly of procallagen and effects of hydroxylation. J Biol Chem 249:7637–7646

    PubMed  CAS  Google Scholar 

  • Fessler JH, Fessler LI (1978) Biosynthesis of procollagen. Ann Rev Biochem 47:129–162

    PubMed  CAS  Google Scholar 

  • Fiedel BA, Rent R, Myhrman R, Gewurz H (1976) Complement activation by interaction of poly-anions and polycations. II. Precipitation and role of IgG, Clq, and Cl-DNFH during heparin-protamin-induced consumption of complement. Immunology 30:161–169

    PubMed  CAS  Google Scholar 

  • von Fodor J (1887) Die Fähigkeit des Blutes, Bakterien zu vernichten. Dtsch Med Wochenschr 13:745–747

    Google Scholar 

  • Foster JA (1982) Elastin structure and biosynthesis: An overview. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology: structural and contractile proteins, part A 82: 559–570

    Google Scholar 

  • Fothergill JE, Anderson WHK (1978) A molecular approach to the complement system. Curr Top Cell Regul 13:259–311

    PubMed  CAS  Google Scholar 

  • Frank M, Gaither TA (1970) Complement fixation by a single molecule of γG hemolysin. J Immunol 104:1458–1466

    PubMed  CAS  Google Scholar 

  • Ghebrehiwet B (1981) Clq inhibitor (ClgINH): Functional properties and possible relationship to a lymphocyte membrane-associated Clq precipitin. J Immunol 126:1837–1842

    PubMed  CAS  Google Scholar 

  • Gigli I, Austen KF (1969) Fluid phase destruction of C2hu by Clhu. I. Its enhancement and inhibition by homologous and heterologous C4. J Exp Med 129:679–696

    PubMed  CAS  Google Scholar 

  • Gigli I, Ruddy S, Austen KF (1968) The stoichiometric measurement of the serum inhibitor of the first component of complement by the inhibition of immune hemolysis. J Immunol 100: 1154–1164

    PubMed  CAS  Google Scholar 

  • Gigli I, Porter RR, Sim RB (1976) The unactivated form of the first component of human complement, Cl. Biochem J 157:541–548

    PubMed  CAS  Google Scholar 

  • Golan MD, Hitschold T, Loos M (1981) The reconstitution of human Cl, the first complement component. Binding of Clr and Cls to Clq influences the Clq conformation. FEBS Lett 128:281–285

    PubMed  CAS  Google Scholar 

  • Golan MD, Burger R, Loos M (1982) Conformational changes in Clq after binding to immune complexes: detection of neoantigens with monoclonal antibodies. J Immunol 129:445–447

    PubMed  CAS  Google Scholar 

  • Grant ME, Kefalides NA, Prockop DJ (1972) The biosynthesis of basement membrane collagen in embryonic chick lens. J Biol Chem 247:3539–3544

    PubMed  CAS  Google Scholar 

  • Hadding U, Dierich M, König W, Limbert M, Schorlemmer HU, Bitter-Suermann D (1973) Ability of the T-cell replacing polyanion to trigger the alternate pathway of complement activation. Eur J Immunol 3:527–529

    PubMed  CAS  Google Scholar 

  • Hahn H (1974) Effects of dextran sulfate 500 on cell-mediated resistance to infection with Listeria monocytogenes in mice. Infect Immun 10:1105–1109

    PubMed  CAS  Google Scholar 

  • Hahn H, Bierther M (1974) Morphological changes induced by dextran sulfate 500 in mononuclear phagocytes of Listeria-infected mice. Infect Immun 10:110–119

    Google Scholar 

  • Haines AL, Lepow IH (1964a) Studies on human C l esterase. I. Purification and enzymatic properties. J Immunol 92:456–467

    PubMed  CAS  Google Scholar 

  • Haines AL, Lepow IH (1964b) Studies on human C’ l esterase. II. Function of purified C1 esterase in the human complement system. J Immunol 92:468–478

    PubMed  CAS  Google Scholar 

  • Harwood R, Grand ME, Jackson DS (1976) The route of secretion of procollagen. The influence of α,α -bipyridyl, colchicine and antimycin A on the secretory process in embryonic-chick tendon and cartilage cells. Biochem J 156:81–90

    PubMed  CAS  Google Scholar 

  • Hitschold T, Golan MD, Loos M (1981) Guinea pig-Clq: Purification, physicochemical and functional characterization, and differences to human Clq. Immunobiol 160:44 (abstr)

    Google Scholar 

  • Hitschold H, Golan MD, Rabs U, Loos M (to be published) Purification and physicochemical properties of Clq from guinea pig serum. Mol Immunol

    Google Scholar 

  • Hochwald GM, Thorbecke GJ, Asofsky R (1961) Sites of formation of immune globulins and of a component of C3. J Exp Med 114:459–470

    PubMed  CAS  Google Scholar 

  • Hughes-Jones NC, Gardner B (1978) The reaction between the complement subcomponent Clq, IgG complexes and polyionic molecules. Immunology 34:459–463

    PubMed  CAS  Google Scholar 

  • Humphrey JH, DourmashMn RR (1965) Electron microscope studies of immune cell lysis. In: Wolstenholme, Knight (eds) Complement, Ciba Foundation Symp. Little, Brown, Boston, pp 175–186

    Google Scholar 

  • Hurst MM, Volanakis JE, Hester RB, Stroud RM, Bennett JC (1974) The structural basis for binding of complement by immunoglobulin M. J Exp Med 140:1117–1121

    PubMed  CAS  Google Scholar 

  • Hurst MM, Volanakis JE, Stroud RM, Bennett JC (1975) Cl fixation and classical complement pathway activation by a fragment of the Cμ4 domain of IgM. J Exp Med 142:1322–1326

    PubMed  CAS  Google Scholar 

  • Hyslop NE, Dourmashkin RR, Green NM, Porter RR (1970) The fixation of complement and the activated first component (Cl) of complement by complexes formed between antibody and divalent hapten. J Exp Med 131:783–802

    PubMed  CAS  Google Scholar 

  • Ishizaka T, Ishizaka K, Borsos T, Rapp H (1966) C l fixation by human isoagglutinins: Fixation of C’ l by γG and γM but not by γA antibody. J Immunol 97:716–726

    PubMed  CAS  Google Scholar 

  • Isliker H, Jocot-Guillermod H, Waldesbühl M, von Fellenberg R, Cerrotini JC (1967) Complement fixation by different IgG proportions and fragments. In: Miescher and Graber (eds) Fifth International Symposium on Immunopathology. Mechanisms of inflammation induced by immune injury. Schwabe, Basel, pp 197–206

    Google Scholar 

  • Isliker H, Bing DH, Hynes RO (1981) Interactions of fibronectin with Clq, a subcomponent of the first component of complement. The Immune System 2:231–238

    CAS  Google Scholar 

  • Isliker H, Bing DH, Lahan J, Hynes RO (1982) Fibronectin interacts with Clq, a subcomponent of the first component of complement. Immunology Lett 4:39–43

    CAS  Google Scholar 

  • Karnovsky ML, Lazdins JK (1978) Biochemical criteria for activated macrophages. J Immunol 121:809–813

    PubMed  CAS  Google Scholar 

  • Kay NE, Douglas StD (1981) Detection of shedding of human blood monocyte Fc receptor during in vitro culture. In Arch Allergy Appl Immunol 66:131–135

    CAS  Google Scholar 

  • Kehoe JM, Fougereau M (1969) Immunoglobulin peptide with complement fixing activity. Nature 224:1212–1213

    PubMed  CAS  Google Scholar 

  • Kerwar SS, Felix AM (1976) Effect of L-3,4-deydropoline on collagen synthesis and prolyl hydroxylase activity in mammalian cell cultures. J Biol Chem 251:503–509

    PubMed  CAS  Google Scholar 

  • Kivirikko KI, Myllylä R (1982) Posttranslational enzymes in the biosynthesis of collagen: Intracellular enzymes. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology: structural and contractile proteins, part A, 82:245–304

    Google Scholar 

  • Knobel HR, Villiger W, Isliker H (1975) Chemical analysis and electron microscopy studies of human Clq prepared by different methods. Europ J Immunol 5:78–82

    CAS  Google Scholar 

  • Kolb WP, Kolb LM, Podack ER (1979) Clq: isolation from human serum in high yield by affinity chromatography and development of a highly sensitive hemolytic assay. J Immunol 122: 2103–2111

    PubMed  CAS  Google Scholar 

  • Lai A Fat RFM, van Furth R (1975) In vitro synthesis of some complement components (Clq, C3 and C4) by lymphoid tissues and circulating leucocytes in man. Immunology 28:359–368

    Google Scholar 

  • Landen B, Dierich MP, Schmitt M (1979) Complement receptor analogous factors in human serum. I. Isolation of a molecule inhibitory for complement dependent rosette formation, its identification as a al-antitrypsin and its functional characterization. Immunobiology 156:153–167

    PubMed  Google Scholar 

  • Laurell AB, Mårtensson U (1974) Interaction between Clq, Clr, and Cls from human serum. Acta Pathol Microbiol Scand [B] 82:585–589

    CAS  Google Scholar 

  • Laurell AB, Mårtensson U, Sjöholm AG (1976) Cl subcomponent complexes in normal and pathological sera studied by crossed immunoelectrophoresis. Acta Pathol Microbiol Scand [C] 84:455–464

    Google Scholar 

  • Laurell AB, Sjöholm A, Johnson U, Mårtensson U (1978) Circulating complexes between Clr and Cls and between Clr, Cls and Cl inactivator. In: Opferkuch W, Rother K, Schulz DR (eds) Clinical aspects of the complement system. Thieme, Stuttgart, pp 21–26

    Google Scholar 

  • Laurell AB, Mårtensson U, Sjöholm AG (1979) Quantitation of Clr-Cls-Cl inactivator complexes by electroimmunoassay. Acta Pathol Microbiol Scand [C] 87:79–81

    Google Scholar 

  • Lee JP, Painter RH (1980) Complement binding properties of two peptides from the C2 region of human IgG 1. Mol Immunol 17:1155–1162

    PubMed  CAS  Google Scholar 

  • Colten HR, Gordon JM, Rapp HJ, Borsos T (1968c) Synthesis of the first component of guinea pig complement by columnar epithelial cells of the small intestine. J Immunol 100:788–792

    PubMed  CAS  Google Scholar 

  • Colten HR, Gordon JM, Borsos T, Rapp JH (1968d) Synthesis of the first component of human complement in vitro. J Exp Med 128:595–604

    PubMed  CAS  Google Scholar 

  • Colten HR, Silverstein AH, Borsos T, Rapp HJ (1968e) Ontogeny of the first component of sheep complement. Immunology 15:459–461

    PubMed  CAS  Google Scholar 

  • Conradie JD, Volanakis JE, Stroud RM (1975) Evidence for a serum inhibitor of Clq. Immuno-chemistry 12:967–971

    CAS  Google Scholar 

  • Cooper NR, Morrison DC (1978) Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J Immunol 120:1862–1868

    PubMed  CAS  Google Scholar 

  • Cooper NR, Jensen FC, Welsh RM, Oldstone MBA (1976) Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med 144:970–984

    PubMed  CAS  Google Scholar 

  • Csákó G, Suba EA, Herp A (1981) Similarities and dissimilarities between the binding ability of Clq and collagen. Clin Exp Immunol 44:181–190

    PubMed  Google Scholar 

  • Day NK, Gewurz H, Pickering PJ, Good RA (1970) Ontogenetic Development of Clq synthesis in the piglet J Immunol 104:1316–1319

    PubMed  CAS  Google Scholar 

  • Day NK, Geiger H, Stroud RM, De Bracco ME, Mancado B, Windhorst D, Good RA (1972) Clr deficiency: An inborn error associated with cutaneous and renal disease. J Clin Invest 51: 1102–1108

    PubMed  CAS  Google Scholar 

  • DeBracco MME, Stroud RM (1971) Clr, subunit of the first complement component: Purification, properties, and assay based on its linking role. J Clin Invest 50:838–848

    CAS  Google Scholar 

  • Dickler HB (1976) Lymphocyte receptors for immunoglobulin. Adv Immunol 24:167–215

    PubMed  CAS  Google Scholar 

  • Dodds AW, Sim RB, Porter RP, Kerr MA (1978) Activation of the first component of human complement (Cl) by antibody-antigen aggregates. Biochem J 175:383–390

    PubMed  CAS  Google Scholar 

  • Einstein LP, Schneeberger EE, Colten HR (1976) Synthesis of the second component of complement by long-term primary cultures of human monocytes. J Exp Med 143:114–126

    PubMed  CAS  Google Scholar 

  • Fessler LI, Fessler JH (1974) Protein assembly of procallagen and effects of hydroxylation. J Biol Chem 249:7637–7646

    PubMed  CAS  Google Scholar 

  • Fessler JH, Fessler LI (1978) Biosynthesis of procollagen. Ann Rev Biochem 47:129–162

    PubMed  CAS  Google Scholar 

  • Fiedel BA, Rent R, Myhrman R, Gewurz H (1976) Complement activation by interaction of poly-anions and polycations. II. Precipitation and role of IgG, Clq, and Cl-DNFH during heparin-protamin-induced consumption of complement. Immunology 30:161–169

    PubMed  CAS  Google Scholar 

  • von Fodor J (1887) Die Fähigkeit des Blutes, Bakterien zu vernichten. Dtsch Med Wochenschr 13:745–747

    Google Scholar 

  • Foster JA (1982) Elastin structure and biosynthesis: An overview. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology: structural and contractile proteins, part A 82: 559–570

    Google Scholar 

  • Fothergill JE, Anderson WHK (1978) A molecular approach to the complement system. Curr Top Cell Regul 13:259–311

    PubMed  CAS  Google Scholar 

  • Frank M, Gaither TA (1970) Complement fixation by a single molecule of γG hemolysin. J Immunol 104:1458–1466

    PubMed  CAS  Google Scholar 

  • Ghebrehiwet B (1981) Clq inhibitor (ClgINH): Functional properties and possible relationship to a lymphocyte membrane-associated Clq precipitin. J Immunol 126:1837–1842

    PubMed  CAS  Google Scholar 

  • Gigli I, Austen KF (1969) Fluid phase destruction of C2hu by Clhu. I. Its enhancement and inhibition by homologous and heterologous C4. J Exp Med 129:679–696

    PubMed  CAS  Google Scholar 

  • Gigli I, Ruddy S, Austen KF (1968) The stoichiometric measurement of the serum inhibitor of the first component of complement by the inhibition of immune hemolysis. J Immunol 100: 1154–1164

    PubMed  CAS  Google Scholar 

  • Gigli I, Porter RR, Sim RB (1976) The unactivated form of the first component of human complement, Cl. Biochem J 157:541–548

    PubMed  CAS  Google Scholar 

  • Golan MD, Hitschold T, Loos M (1981) The reconstitution of human Cl, the first complement component. Binding of Clr and Cls to Clq influences the Clq conformation. FEBS Lett 128:281–285

    PubMed  CAS  Google Scholar 

  • Golan MD, Burger R, Loos M (1982) Conformational changes in Clq after binding to immune complexes: detection of neoantigens with monoclonal antibodies. J Immunol 129:445–447

    PubMed  CAS  Google Scholar 

  • Grant ME, Kefalides NA, Prockop DJ (1972) The biosynthesis of basement membrane collagen in embryonic chick lens. J Biol Chem 247:3539–3544

    PubMed  CAS  Google Scholar 

  • Hadding U, Dierich M, König W, Limbert M, Schorlemmer HU, Bitter-Suermann D (1973) Ability of the T-cell replacing polyanion to trigger the alternate pathway of complement activation. Eur J Immunol 3:527–529

    PubMed  CAS  Google Scholar 

  • Hahn H (1974) Effects of dextran sulfate 500 on cell-mediated resistance to infection with Listeria monocytogenes in mice. Infect Immun 10:1105–1109

    PubMed  CAS  Google Scholar 

  • Hahn H, Bierther M (1974) Morphological changes induced by dextran sulfate 500 in mononuclear phagocytes of Listeria-infected mice. Infect Immun 10:110–119

    Google Scholar 

  • Haines AL, Lepow IH (1964a) Studies on human C l esterase. I. Purification and enzymatic properties. J Immunol 92:456–467

    PubMed  CAS  Google Scholar 

  • Haines AL, Lepow IH (1964b) Studies on human C’ l esterase. II. Function of purified C1 esterase in the human complement system. J Immunol 92:468–478

    PubMed  CAS  Google Scholar 

  • Harwood R, Grand ME, Jackson DS (1976) The route of secretion of procollagen. The influence of α,α -bipyridyl, colchicine and antimycin A on the secretory process in embryonic-chick tendon and cartilage cells. Biochem J 156:81–90

    PubMed  CAS  Google Scholar 

  • Hitschold T, Golan MD, Loos M (1981) Guinea pig-Clq: Purification, physicochemical and functional characterization, and differences to human Clq. Immunobiol 160:44 (abstr)

    Google Scholar 

  • Hitschold H, Golan MD, Rabs U, Loos M (to be published) Purification and physicochemical properties of Clq from guinea pig serum. Mol Immunol

    Google Scholar 

  • Hochwald GM, Thorbecke GJ, Asofsky R (1961) Sites of formation of immune globulins and of a component of C3. J Exp Med 114:459–470

    PubMed  CAS  Google Scholar 

  • Hughes-Jones NC, Gardner B (1978) The reaction between the complement subcomponent Clq, IgG complexes and polyionic molecules. Immunology 34:459–463

    PubMed  CAS  Google Scholar 

  • Humphrey JH, DourmashMn RR (1965) Electron microscope studies of immune cell lysis. In: Wolstenholme, Knight (eds) Complement, Ciba Foundation Symp. Little, Brown, Boston, pp 175–186

    Google Scholar 

  • Hurst MM, Volanakis JE, Hester RB, Stroud RM, Bennett JC (1974) The structural basis for binding of complement by immunoglobulin M. J Exp Med 140:1117–1121

    PubMed  CAS  Google Scholar 

  • Hurst MM, Volanakis JE, Stroud RM, Bennett JC (1975) Cl fixation and classical complement pathway activation by a fragment of the Cμ4 domain of IgM. J Exp Med 142:1322–1326

    PubMed  CAS  Google Scholar 

  • Hyslop NE, Dourmashkin RR, Green NM, Porter RR (1970) The fixation of complement and the activated first component (Cl) of complement by complexes formed between antibody and divalent hapten. J Exp Med 131:783–802

    PubMed  CAS  Google Scholar 

  • Ishizaka T, Ishizaka K, Borsos T, Rapp H (1966) C l fixation by human isoagglutinins: Fixation of C’ l by γG and γM but not by γA antibody. J Immunol 97:716–726

    PubMed  CAS  Google Scholar 

  • Isliker H, Jocot-Guillermod H, Waldesbühl M, von Fellenberg R, Cerrotini JC (1967) Complement fixation by different IgG proportions and fragments. In: Miescher and Graber (eds) Fifth International Symposium on Immunopathology. Mechanisms of inflammation induced by immune injury. Schwabe, Basel, pp 197–206

    Google Scholar 

  • Isliker H, Bing DH, Hynes RO (1981) Interactions of fibronectin with Clq, a subcomponent of the first component of complement. The Immune System 2:231–238

    CAS  Google Scholar 

  • Isliker H, Bing DH, Lahan J, Hynes RO (1982) Fibronectin interacts with Clq, a subcomponent of the first component of complement. Immunology Lett 4:39–43

    CAS  Google Scholar 

  • Karnovsky ML, Lazdins JK (1978) Biochemical criteria for activated macrophages. J Immunol 121:809–813

    PubMed  CAS  Google Scholar 

  • Kay NE, Douglas StD (1981) Detection of shedding of human blood monocyte Fc receptor during in vitro culture. In Arch Allergy Appl Immunol 66:131–135

    CAS  Google Scholar 

  • Kehoe JM, Fougereau M (1969) Immunoglobulin peptide with complement fixing activity. Nature 224:1212–1213

    PubMed  CAS  Google Scholar 

  • Kerwar SS, Felix AM (1976) Effect of L-3,4-deydropoline on collagen synthesis and prolyl hydroxylase activity in mammalian cell cultures. J Biol Chem 251:503–509

    PubMed  CAS  Google Scholar 

  • Kivirikko KI, Myllylä R (1982) Posttranslational enzymes in the biosynthesis of collagen: Intracellular enzymes. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology: structural and contractile proteins, part A, 82:245–304

    Google Scholar 

  • Knobel HR, Villiger W, Isliker H (1975) Chemical analysis and electron microscopy studies of human Clq prepared by different methods. Europ J Immunol 5:78–82

    CAS  Google Scholar 

  • Kolb WP, Kolb LM, Podack ER (1979) Clq: isolation from human serum in high yield by affinity chromatography and development of a highly sensitive hemolytic assay. J Immunol 122: 2103–2111

    PubMed  CAS  Google Scholar 

  • Lai A Fat RFM, van Furth R (1975) In vitro synthesis of some complement components (Clq, C3 and C4) by lymphoid tissues and circulating leucocytes in man. Immunology 28:359–368

    Google Scholar 

  • Landen B, Dierich MP, Schmitt M (1979) Complement receptor analogous factors in human serum. I. Isolation of a molecule inhibitory for complement dependent rosette formation, its identification as a al-antitrypsin and its functional characterization. Immunobiology 156:153–167

    PubMed  Google Scholar 

  • Laurell AB, Mårtensson U (1974) Interaction between Clq, Clr, and Cls from human serum. Acta Pathol Microbiol Scand [B] 82:585–589

    CAS  Google Scholar 

  • Laurell AB, Mårtensson U, Sjöholm AG (1976) Cl subcomponent complexes in normal and pathological sera studied by crossed immunoelectrophoresis. Acta Pathol Microbiol Scand [C] 84:455–464

    Google Scholar 

  • Laurell AB, Sjöholm A, Johnson U, Mårtensson U (1978) Circulating complexes between Clr and Cls and between Clr, Cls and Cl inactivator. In: Opferkuch W, Rother K, Schulz DR (eds) Clinical aspects of the complement system. Thieme, Stuttgart, pp 21–26

    Google Scholar 

  • Laurell AB, Mårtensson U, Sjöholm AG (1979) Quantitation of Clr-Cls-Cl inactivator complexes by electroimmunoassay. Acta Pathol Microbiol Scand [C] 87:79–81

    Google Scholar 

  • Lee JP, Painter RH (1980) Complement binding properties of two peptides from the C2 region of human IgG 1. Mol Immunol 17:1155–1162

    PubMed  CAS  Google Scholar 

  • Lepow IH, Naff GB, Todd EW, Pensky J, Hinz CF (1963) Chromatographic resolution of the first component of human complement into three activities. J Exp Med 117:983–1008

    PubMed  CAS  Google Scholar 

  • Lepow IH, Naff GB, Pensky J (1965) Mechanisms of activation of C l and inhibition of C’1 esterase. Ciba Foundation Symposium: “Complement” Churchill, London, pp 74–90

    Google Scholar 

  • Levy LR, Lepow JH (1959) Assay and properties of serum inhibitor of C’1-esterase. Proc Soc Exp Biol Med 101:608–611

    PubMed  CAS  Google Scholar 

  • Lin TY, Fletcher DS (1978) Interaction of human Clq with insoluble immunoglobulin aggregates. Immunochemistry 15:107–117

    PubMed  CAS  Google Scholar 

  • Linscott WD, Hansen SS (1969) Non-complement-fixing IgM antibodies in the guinea pig. J Immunol 103:423–428

    PubMed  CAS  Google Scholar 

  • Littleton C, Kessler D, Burkholder PM (1970) Cellular basis for synthesis of the fourth component of guinea-pig complement as determined by a haemolytic plaque technique. Immunology 18:693–704

    PubMed  CAS  Google Scholar 

  • Littman BH, Ruddy S (1977) Production of the second component of complement by human monocytes: stimulation by antigen-activated lymphokines. J Exp Med 145:1344–1352

    PubMed  CAS  Google Scholar 

  • Loos M (1982a) The classical complement pathway: mechanism of activation of the first component by antigen-antibody complexes. Prog Allergy 30:135–192

    PubMed  CAS  Google Scholar 

  • Loos M (1982b) Antibody independent activation of Cl, the first component of complement. Ann Immunol (Paris) 133C:165–179

    CAS  Google Scholar 

  • Loos M (1982c) The functions of endogenous Clq, a subcomponent of the first component of complement, as receptor on the membrane of macrophages. Mol Immunol 19:1229–1238

    PubMed  CAS  Google Scholar 

  • Loos M, Bitter-Suermann D (1976) Mode of interaction of different polyanions with the first (Cl, C1) the second (C2), and the fourth (C4) component of complement. IV. Activation of C1 in serum by polyanions. Immunology 31:931–934

    PubMed  CAS  Google Scholar 

  • Loos M, König W (1977) Interaction of DNP-antigens with the first component of complement (C1). J Immunol 118:223–225

    CAS  Google Scholar 

  • Loos M, Thesen R (1978) Trinitrophenylated red cells (E-TNP) as a model for antibody-independent activation of the complement system via the classical pathway. J Immunol 121:24–28

    PubMed  CAS  Google Scholar 

  • Loos M, Schorlemmer HU (1981) The function of endogenous C1q, The Fc recognizing subcomponent of the first component of complement, in the membrane of peritoneal macrophage as Fc receptor and as trigger in polyanion-mediated macrophage stimulation. In: Resch K, Kirchner H (eds) Mechanisms of lymphocyte activation. Biomedical Press, Elsevier/North-Holland, pp 313–315

    Google Scholar 

  • Loos M, Schorlemmer HU (1982) The receptor functions of endogenous C1q, a subcomponent of the first component of complement, on peritoneal macrophages. In: Peeters H (ed) Prot Biol Fluids. Pergamon Press, Oxford UK, vol 29:439–442

    Google Scholar 

  • Loos M, Opferkuch W, Ringelmann R (1971) C1-inactivator of guineapig serum: Titration, purification and characterization of the inactivator. Z Med Mikrobiol Immunol 156:194–207

    PubMed  CAS  Google Scholar 

  • Loos M, Borsos T, Rapp HJ (1972a) Activation of the first component of complement. Evidence for an internal activation step. J Immunol 108:683–688

    PubMed  CAS  Google Scholar 

  • Loos M, Wolf HU, Opferkuch W (1972b) The C1 inactivator from guinea pig serum, III. Characterization and kinetic data of the reaction between the inactivator and EAC1 and EAC14. Immuno-chemistry 9:451–459

    CAS  Google Scholar 

  • Loos M, Vadlamudi S, Meltzer M, Shifrin S, Borsos T, Goldin A (1972c) Detection of endotoxin in commercial L-asparaginase preparations by complement fixation and separation by chromatography. Cancer Res 32:2292–2296

    PubMed  CAS  Google Scholar 

  • Loos M, Borsos T, Rapp HJ (1973) The first component of complement in serum: Evidence for a hitherto unrecognized factor in C1 necessary for internal activation. J Immunol 110:205–212

    PubMed  CAS  Google Scholar 

  • Loos M, Bitter-Suermann D, Dierich M (1974) Interaction of the first (C1), the second (C2) and the fourth (C4) component of complement with different preparations of bacterial lipopoly-saccharides and with lipid A. J Immunol 112:935–940

    PubMed  CAS  Google Scholar 

  • Loos M, Brunner H (1979) Complement components (C1, C2, C3, C4) in bronchial secretions after intranasal infection of guinea pigs with Mycoplasma pneumoniae: Dissociation of unspecific and specific defence mechanisms. Infect Immun 25:583–585

    PubMed  CAS  Google Scholar 

  • Loos M, Volanakis JE, Stroud RM (1976a) Mode of interaction of different polyanions with the first (C1, C1) the second (C2) and the fourth (C4) component of complement. III. Inhibition of C4 and C2 binding site(s) on C1s by polyanions. Immunochemistry 13:789–791

    PubMed  CAS  Google Scholar 

  • Loos M, Hill HU, Wellek B, Heinz HP (1976b) Ultracentrifugation studies on the native form of the first component of human complement (Cl). FEBS Lett 64:341–345

    PubMed  CAS  Google Scholar 

  • Loos M, Wellek B, Thesen R, Opferkuch W (1978) Antibody-independent interaction of the first component of complement with gram-negative bacteria. Infect Immun 22:5–9

    PubMed  CAS  Google Scholar 

  • Loos M, Müller W, Boltz-Nitulescu G, Förster O (1980a) Evidence that Clq, a subcomponent of the first component of complement, is an Fc receptor of peritoneal and alveolar macrophages. Immunobiol 157:54–61

    CAS  Google Scholar 

  • Loos M, Storz R, Müller W, Lemmel EM (1981) Immunofluorescence studies on the subcomponents of the first component of complement (C1): Detection of C1q and Cls in different cells of biopsy material and on human as well as on guinea pig peritoneal macrophages. Immunobiol 158:213–224

    CAS  Google Scholar 

  • Loos M, Laurell AB, Sjöholm AG, Mårtensson U, Berkel AI (1980b) Immunochemical and functional analyses of a complete Clq deficiency in man: Evidence that Clr and Cls are in the native form, and that they reassociate with purified Clq to form macromolecular Cl. J Immunol 124:59–63

    PubMed  CAS  Google Scholar 

  • Lukas TJ, Munoz H, Erickson BW (1981) Inhibition of Cl-mediated immune hemolysis by mono-meric and dimeric peptides from the second constant domain of human immunoglobulin G. J Immunol 127:2555–2560

    PubMed  CAS  Google Scholar 

  • McKay EJ, Laurell AB, Mårtensson K, Sjöholm AG (1981) Activation of Cl, the first component of complement, the generation of Clr-Cls and C1 inactivator complexes in normal serum, by heparin-affinity chromatography. Mol Immunol 18:349–357

    PubMed  CAS  Google Scholar 

  • McKenzie MR, Creevy N, Heh M (1971) The interaction of human IgM and Clq. J Immunol 106:65–68

    Google Scholar 

  • Mayer MM (1961) Development of the one-hit theory of immune hemolysis. In: Heidelberger M, Plescia OJ (eds) Immunochemical approaches to problems in microbiology. Rutgers University Press, New Brunswick, N. J., pp 268–279

    Google Scholar 

  • Medicus RG, Chapius RM (1980) The first component of complement I. Purification and properties of native Cl. J Immunol 125:390–395

    PubMed  CAS  Google Scholar 

  • Melchers F (1971) Biosynthesis of the carbohydrate portion of immunoglobulins. Biochem J 125: 241–347

    PubMed  CAS  Google Scholar 

  • Menzel EJ, Smolen JS, Liotta LA, Reid KBM (1981a) Competition between antifibronectin-anti-body, C1q and collagens for the collagen-binding region of fìbronectin. Immunobiology 160:72 (abstr)

    Google Scholar 

  • Menzel EJ, Smolen JS, Reid KBM (1981b) Immunological cross-reactivity between the collagenlike fragment of human Clq and human type I collagen. Mol Immunol 18:765–771

    PubMed  CAS  Google Scholar 

  • Metchnikoff E (1889) Sur le propriété bactéricide des humeurs. Revue critique. Ann Immunol, Paris 3:664–671

    Google Scholar 

  • Metchnikoíf E (1905) Immunity in infective diseases. Cambridge University Press, London New York, p 195

    Google Scholar 

  • Miller EJ, Gay S (1982) Collagen: An overview. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology structural and contractüe proteins, part A 82:3–32

    Google Scholar 

  • Molenaar JL, van Galen M, Hannema AJ, Zeijlemaker W, Pondman KW (1977) Spontaneous release of Fc receptor-like material from human lymphoblastoid cell lines. Eur J Immunol 7:230–236

    PubMed  CAS  Google Scholar 

  • Moore DL, Vas SI (1968) Studies of the production of complement. Immunology 15:185–195

    PubMed  CAS  Google Scholar 

  • Morris KM, Colten HR, Bing DH (1978) The first component of complement. A quantitative comparison of its biosynthesis in culture by human epithelial and mesenchymal cells. J Exp Med 148:1007–1019

    PubMed  CAS  Google Scholar 

  • Müller W, Hanauske-Abel H, Loos M (1978a) Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages: Evidence for an independent production of the Cl subunits. J Immunol 121:1578–1584

    PubMed  Google Scholar 

  • Müller W, Hanauske-Abel H, Loos M (1978b) Reversible inhibition of Clq release from guinea pig macrophages by 2,2-dipyridyl. FEBS Lett 90:218–222

    PubMed  Google Scholar 

  • Müller-Eberhard HJ (1969) Complement. Ann Rev Biochem 38:389–414

    PubMed  Google Scholar 

  • Müller-Eberhard HJ (1975) Complement. Ann Rev Biochem 44:697–724

    PubMed  Google Scholar 

  • Müller-Eberhard HJ, Kunkel HG (1961) Isolation of a thermolabile serum protein which precipitates Y-globulin aggregates and participates in immune hemolysis. Proc Soc Exp Biol Med 106:291–295

    PubMed  Google Scholar 

  • Müller-Eberhard HJ, Lepow IH (1965) C 1 esterase effect on activity and physicochemical properties of the fourth component of complement. J Exp Med 121:819–833

    Google Scholar 

  • Müller-Eberhard HJ, Schreiber RD (1980) Molecular biology and chemistry of the alternative pathway of complement. Adv Immunol 29:1–53

    PubMed  Google Scholar 

  • Müller-Eberhard HJ, Polley MJ, Calcott MA (1967) Formation and functional significance of a molecular complex derived from the second and the fourth component of human complement. J Exp Med 125:359–380

    PubMed  Google Scholar 

  • Müller-Eberhard HJ, Bokisch VA, Budzko DB (1970) In: Mischer PA (ed) Immunopathology. VI. International Symposium. Grune and Stratton, New York, pp 191–200

    Google Scholar 

  • Naff GB, Ratnoff OD (1968) The enzymatic nature of C 1r. Conversion of C’ Is to C’1 esterase and digestion of amino acid esters by C’ 1r. J Exp Med 128:571–593

    PubMed  CAS  Google Scholar 

  • Naff GB, Pensky J, Lepow IH (1964) The macromolecular nature of the first component of human complement. J Exp Med 119:593–613

    PubMed  CAS  Google Scholar 

  • Nagaki K, Stroud RM (1969) The relationship of the hemolytic activity of active C’ 1s to its TAME esterase action: A new method of purification and assay. J Immunol 102:421–430

    PubMed  CAS  Google Scholar 

  • Nagasawa S, Takahashi K, Koyama J (1974) Isolation of a complex of the subcomponents of the activated first component of complement, Clr-Cls, from acid-human plasma. FEBS Lett 41: 280–282

    PubMed  CAS  Google Scholar 

  • Nolan JC, Ridge S, Oronsky AL, Kerwar SS (1978) Studies on the mechanism of reduction of prolyl hydroxylase activity by D,L-3,4-dehydroproHne. Arch Biochem Biophys 189:448–453

    PubMed  CAS  Google Scholar 

  • Nuttall G (1888) Experimente über die bakterienfeindlichen Einflüsse des tierischen Körpers. Z Hyg Infektionskrankh 4:353–394

    Google Scholar 

  • Painter RH, Foster DB, Gardner B, Hughes-Jones NC (1982) Functional affinity constants of sub-fragments of immunoglobulin G for Glq. Mol Immunol 19:127–131

    PubMed  CAS  Google Scholar 

  • Parkhouse RME, Melchers F (1971) Biosynthesis of the carbohydrate portions of immunoglobulin M. Biochem J 125:235–240

    PubMed  CAS  Google Scholar 

  • Patrick RA, Taubman SB, Lepow IH (1970) Cleavage of the fourth component of human complement (C4) by activated Cls. Immunochemistry 7:217–225

    PubMed  CAS  Google Scholar 

  • Pearlstein E, Sorvillo J, Gigli I (1982) The interaction of human plasma fibronectin with a subunit of the first component of complement, C1q. J Immunol 128:2036–2039

    PubMed  CAS  Google Scholar 

  • Peltier AP, Cyna L, Dryll A (1978) ‘In vitro’ study of a reaction between the complement system and cellular DNA. Immunology 35:779–784

    PubMed  CAS  Google Scholar 

  • Pfeiffer R, Issaeff R (1894) Über die speeifische Bedeutung der Choleraimmunität. Z Hyg Infek-tionskr 17:355–400

    Google Scholar 

  • Pickering RJ, Naff GB, Stroud RM, Good RA, Gewurz H (1970) Deficiency of Clr in human serum. Effects on the structure and function of macromolecular C1. J Exp Med 141:803–815

    Google Scholar 

  • Pillemer L (1943) Recent advances in the chemistry of complement. Chem Rev 33:1–26

    CAS  Google Scholar 

  • Pillemer LE, Ecker E, Oncley JL, Cohn EJ (1941) The preparation and physicochemical characterization of the serum protein components of human complement. J Exp Med 74:297–308

    PubMed  CAS  Google Scholar 

  • Plaut AG, Cohen S, Tomasi TB (1972) Immunoglobulin M: Fixation of human complement by the Fc fragment. Science 176:55–56

    PubMed  CAS  Google Scholar 

  • Porter RR, Reid KBM (1979) Activation of the complement system by antibody-antigen complexes: the classical pathway. Adv Protein Chem 33:1–71

    PubMed  CAS  Google Scholar 

  • Prockop DJ, Tuderman L (1982) Posttranslational in the biosynthesis of collagen: extracellular enzymes. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology Structural and contractile proteins, part A 82:305–319

    Google Scholar 

  • Prockop DJ, Berg RA, Kivirikko KI, Uitto J (1976) Intracellular steps in the biosynthesis of collagen. In: Ramachandran GN, Reddi AH (eds) Biochemistry of Collagen. Plenum Press, New York, pp 163–273

    Google Scholar 

  • Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301:13–85

    PubMed  CAS  Google Scholar 

  • Rabs U, Hitschold T, Golan MD, Loos M (1981) Isolation and characterization of guinea pig macro-phages derived Clq and its similarities with guinea pig serum derived Clq. Immunobiology (abstr) 160:87

    Google Scholar 

  • Raepple E, Hill HU, Loos M (1976) Mode of interaction of different polyanions with the first (C1, C1), the second (C2) and the fourth (C4) component of complement I. Effect on fluid phase C1 and on C1 bound to EA or to EAC4. Immunochemistry 13:251–255

    PubMed  CAS  Google Scholar 

  • Rapp HJ, Bprsos T (1970) Molecular basis of complement action. Appleton-Century-Crofts, New York

    Google Scholar 

  • Ratnoff OD, Pensky J, Ogston D, Naff GB (1969) The inhibition of plasmin, plasma kallikrein, plasma permeability factor, and the C’ lr subcomponent of the first component of complement by serum Cl esterase inhibitor. J Exp Med 129:315–331

    PubMed  CAS  Google Scholar 

  • Regelson W (1968a) The growth-regulating activity of polyanions: A theoretical discussion of their place in the intercellular environment and their role in cell physiology. Adv Cancer Res 11: 223–304

    PubMed  CAS  Google Scholar 

  • Regelson W (1968b) The antimitotic activity of polyanions. Adv Chemother 3:303–371

    PubMed  CAS  Google Scholar 

  • Reid KBM (1974) A collagen-like amino acid sequence in a polypeptide chain of human C1q (a subcomponent of the first component of complement). Biochem J 141:189–203

    PubMed  CAS  Google Scholar 

  • Reid KBM (1977) Amino acid sequence of the N-terminal forty-two amino acid residues of the C chain of subcomponent C1q of the first component of human complement. Biochem J 161: 247–251

    PubMed  CAS  Google Scholar 

  • Reid KBM (1981) Preparation of human Clq, a subcomponent of the first component of the classical pathway of complement In: Lorand L (ed) Methods in enzymology, proteolytic enzymes, part C, Academic Press, London 80:16–25

    Google Scholar 

  • Reid KBM (1982) C1q. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology structural and contractile proteins. Academic Press, London, part A 82:319–324

    Google Scholar 

  • Reid KBM, Porter RR (1976) Subimit composition and structure of subcomponent C1q of the first component of human complement Biochem J 155:19–23

    PubMed  CAS  Google Scholar 

  • Reid KBM, Solomon E (1977) Biosynthesis of the first component of complement by human fibroblasts. Biochem J 167:647–660

    PubMed  CAS  Google Scholar 

  • Reid KBM, Lowe DM, Porter RR (1972) Isolation and characterization of C1q, a subcomponent of the first component of complement, from human and rabbit sera. Biochem J 130:749–763

    PubMed  CAS  Google Scholar 

  • Reid KBM, Sim RB, Faiers AP (1977) Inhibition of the reconstitution of the haemolytic activity of the first component of complement by a pepsin-derived fragment of subcomponent Clq. Biochem J 161:239–245

    PubMed  CAS  Google Scholar 

  • Rent R, Ertel N, Eisenstein R, Gewurz H (1975) Complement activation by interaction of poly-anions and polycations. I. Heparm-protamine induced consumption of complement. J Immunol 114:120–124

    PubMed  CAS  Google Scholar 

  • Riches DWH, Stanworth DR (1981) Studies on the possible involvement of complement component C3 in the initiation of acid hydrolase secretion by macrophages. I. Correlation between enzyme-releasing and complement-activating capacities of several secretagogues. Immunology 44:29–39

    PubMed  CAS  Google Scholar 

  • Rosenberry TL, Barnett P, Mays C (1982) Acetylcholinesterase. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology: Structural and contractile Proteins, Part A 82:325–339

    Google Scholar 

  • Sakai K, Stroud RM (1973) Purification, molecular properties, and activation of C1 proesterase, C1s. J Immunol 110:1010–1020

    CAS  Google Scholar 

  • Sakai K, Stroud RM (1974) The activation of Cls with purified Clr. Immunochemistry 11:191–196

    PubMed  CAS  Google Scholar 

  • Sandberg AL, Oliveira B, Osier AG (1971) Two complement interaction sites in guinea pig immuno-globulins. J Immunol 106:282–285

    PubMed  CAS  Google Scholar 

  • Sassano FG, Colten HR, Borsos T, Rapp HJ (1972) Resolution of the first component of guinea pig complement into three subunits, Clq, Clr and Cls and their hybridization with human Cl subunits. Immunochemistry 9:405–412

    PubMed  CAS  Google Scholar 

  • Schorlemmer HU, Bitter-Suermann D, Allison AC (1977a) Complement activation by the alternative pathway and macrophage enzyme secretion in the pathogenesis of chronic inflammation. Immunology 32:929–940

    PubMed  CAS  Google Scholar 

  • Schorlemmer HU, Burger R, Hylton W, Allison AC (1977b) Induction of lysosomal enzyme release from cultured macrophages by dextran sulfate. Clin Immunol Immunopathol 7:88–96

    PubMed  CAS  Google Scholar 

  • Schultz DR, Arnold PI, Wu MC, Lo TM, Volanakis JR, Loos M (1979) Isolation and partial characterization of a polysaccharide in ant venom (Pseudomyrmex sp.) that activates the classical complement pathway. Mol Immunol 16:253–264

    PubMed  CAS  Google Scholar 

  • Schultz DR, Loos M, Bub F, Arnold PI (1980) Differentiation of hemolyticaUy active fluid-phase and cell-bound human Clq by an ant venom-derived polysaccharide. J Immunol 124:1251–1257

    PubMed  CAS  Google Scholar 

  • Shaw DR, Griffin FM jr (1981) Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion. Nature 289:409–411

    PubMed  CAS  Google Scholar 

  • Shelton E, Yonemasu K, Stroud RM (1972) Ultrastructure of the human component Clq. Proc Nat Acad Sci USA 69:65–68

    PubMed  CAS  Google Scholar 

  • Siboo R, Vas SI (1965) Studies on in vitro antibody production III. Production of complement Can J Microbiol 11:415–425

    CAS  Google Scholar 

  • Siegel J, Claus D, Retras K (1976) Interaction of C-reactive protein (CRP) and Cl. Fed Proc 35:493 (abstr)

    Google Scholar 

  • Siegel RC, Schumaker VN, Poon PH (1981) Stoichiometry and sedimentation properties of the complex formed between the Clq and Clr2Cls2 subcomponent of the first component of complement J Immunology 127:2447–2452

    CAS  Google Scholar 

  • Silvestri L, Baker JR, Roden L, Stroud RM (1981) The Clq inhibitor in serum is a chrondroitin 4-sulfate proteoglycan. J Biol Chem 256:7383–7387

    PubMed  CAS  Google Scholar 

  • Sim RB (1981) The human complement system serine proteases Clr and Cls and their proenzyms. In: Lorand L (ed) Methods in Enzymology. Proteolytic enzymes. Academic Press, London, part C 80:26–42

    Google Scholar 

  • Sim RB, Porter RR, Reid KBM, Gigli I (1977) The structure and enzymatic activities of the Clr and Cls subcomponents of Cl, the first component of complement Biochem J 163:219–227

    PubMed  CAS  Google Scholar 

  • Skok J, Solomon E, Reid KBM, Thompson RA (1981) Distinct genes for fibroblast and serum Clq. Nature 292:549–551

    PubMed  CAS  Google Scholar 

  • Sobel AT, Bokisch VA (1975) Receptors for C4b and Clq on human peripheral lymphocytes and lymphoblastoid cells. In: Seligman M, Preud’Homme, Kourilsky FM (eds) Membrane Receptors of lymphocytes. North Holland Publishing Co, Amsterdam, pp 151–162

    Google Scholar 

  • Spiegelberg HL (1974) Biological activities of immunoglobulins of different classes and subclasses. Adv Immunol 19:259–294

    PubMed  CAS  Google Scholar 

  • Stecher VJ, Thorbecke GJ (1967a) Sites of synthesis of serum proteins. II. Medium requirements of serum protein production by rat macrophages. J Immunol 99:653–659

    PubMed  CAS  Google Scholar 

  • Stecher VJ, Thorbecke GJ (1967b) Sites of synthesis of serum proteins. III. Production of ß1C, ß1E, and transferrin by primate and rodent cell lines. J Immunol 99:660–668

    PubMed  CAS  Google Scholar 

  • Stecher VJ, Morse JH, Thorbecke GJ (1967c) Sites of production of primate serum proteins associated with the complement system. Proc Soc Exp Biol Med 124:433–438

    PubMed  CAS  Google Scholar 

  • Strang JC, Siegel RC, Phillips LM, Poon PH, Schumaker VN (1982) Ultrastructure of the first component of human complement: Electron microscopy of the cross-linked complex. Proc Natl Acad Sci USA 79:586–590

    PubMed  CAS  Google Scholar 

  • Stroud RM, Nagaki K, Pickering RJ, Gewurz H, Good RA, Cooper MD (1970) Sub-units of the first complement component in immunologic deficiency syndromes: Independence of Cls and Clq. Clin Exp Immunol 7:133–137

    PubMed  CAS  Google Scholar 

  • Suba EA, Csákó G (1976) Clq (C1) receptor on human platelets: inhibition of collagen induced platelet aggregation by Clq (Cl) molecules. J Immunol 117:304–309

    PubMed  CAS  Google Scholar 

  • Takahashi K, Nagasawa S, Koyama J (1975a) A gross structure of an activated form of a subunit of the first component of human complement, Clr. FEBS Lett 55:156–160

    CAS  Google Scholar 

  • Takashashi K, Nagasawa S, Koyama J (1975b) The NH2-termmal sequence of a subunit of the first component of human complement, Cls, and its activated form, Clš. FEBS Lett 50:330–333

    Google Scholar 

  • Tamura N, Nelson RA jr (1968) The purification and reactivity of the first components of complement from guinea pig, human, and canine sera. J Immunol 101:1333–1345

    PubMed  CAS  Google Scholar 

  • Taranta A, Weiss HS, Franklin EC (1961) Precipitating factor for aggregated γ-globulin in normal human sera. Nature 189:239–240

    PubMed  CAS  Google Scholar 

  • Taubman SB, Lepow IH (1971) Cleavage of human Cls by human lysosomal enzymes, plasmin, and trypsin. Immunochemistry 8:951–961

    PubMed  CAS  Google Scholar 

  • Tenner AJ, Cooper NR (1980) Analysis of receptor-mediated C1q binding to human peripheral blood mononuclear cells J Immunol 125:1658–1664

    PubMed  CAS  Google Scholar 

  • Tenner AJ, Cooper NR (1981) Identification of types of cells in human peripheral blood that bind Clq. J Immunol 126:1174–1179

    PubMed  CAS  Google Scholar 

  • Thesen R, Back W, Loos M (1978) Preparation of trinitrophenylated red cells for antibody independent lysis by complement. J Immunol Methods 20:201–209

    PubMed  CAS  Google Scholar 

  • Thompson RA, Haeney M, Reid KBM, Davies JG, White RHR, Cameron AH (1980) A genetic defect of the Clq subcomponent of complement associated with childhood (immune complex) nephritis. N Engl J Med 303:22–24

    PubMed  CAS  Google Scholar 

  • Thorbecke GJ, Hochwald GM, van Furth R, Müller-Eberhard HJ, Jakobson EB (1965) Problems in determining the sites of synthesis of complement components. In: Wolstenholme GEW, Knight J (eds) Ciba-Symposium “Complement” J and A Churchill, London, pp 99–119

    Google Scholar 

  • Tsukamoto Y, Helsel WE, Wahl SM (1981) Macrophage production of fibronectin, a chemo-atractant for fibroblasts. J Immunol 127:673–678

    PubMed  CAS  Google Scholar 

  • Unkeless JC, Fleit H, Mellman IS (1981) Structural aspects and heterogeneity of immunoglobulin Fc receptors. Adv Immunol 31:247–270

    PubMed  CAS  Google Scholar 

  • Valet G, Cooper NR (1974a) Isolation and characterization of the proenzyme form of the Clr subunit of the first complement component. J Immunol 112:1667–1673

    PubMed  CAS  Google Scholar 

  • Valet G, Cooper NR (1974b) Isolation and characterization of the proenzyme form of the Cls subunit of the first complement component. J Immunol 112:339–350

    PubMed  CAS  Google Scholar 

  • Valet G, Kahle H, Timpl R (1978) Inhibition of the Cl complement molecule by collagen and procollagen peptides. Immunobiology 155:71 (abstr)

    Google Scholar 

  • Volanakis JE, Kaplan MH (1974) Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes: requirement for human Clq. J Immunol 113:9–17

    PubMed  CAS  Google Scholar 

  • Volanakis JE, Stroud RM (1972) Rabbit Clq: Purification, fiinctinal and structural studies. J Immunol Methods 2:25–34

    PubMed  CAS  Google Scholar 

  • Wautier JL, Souchon H, Reid KBM, Peltier AP, Caen JP (1977) Studies on the mode of reaction of the first component of complement with platelets. Interaction between collagen-like portion of Clq and platelets. Immunochemistry 14:763–766

    PubMed  CAS  Google Scholar 

  • Wautier JL, Reid KBM, Legrand Y, Caen JP (1980) Region of the Clq molecule involved in the interaction between platelets and subcomponent Clq of the first component of complement. Mol Immunol 17:1399–1405

    PubMed  CAS  Google Scholar 

  • Winkelhake JL (1978) Immunoglobulin structure and effector functions. Immunochemistry 15: 695–714

    PubMed  CAS  Google Scholar 

  • Wyatt HV (1974) Synthesis of the second and fourth components of complement by tissue culture cell lines. Eur J Immunol 4:34–38

    PubMed  CAS  Google Scholar 

  • Wyatt HV, Colten HR, Borsos T (1972) Production of the second (C2) and fourth (C4) components of guinea pig complement by single peritoneal cells: Evidence that one cell may produce both components. J Immunol 108:1609–1614

    PubMed  CAS  Google Scholar 

  • Yachnin S, Rosenblum D, Chatman D (1964) Biological properties of polynucleotides. V. Studies on the inhibition of the first component of complement by polyionsinic acid; the interaction with Clq. J Immunol 93:542–548

    Google Scholar 

  • Yonemasu K, Stroud RM (1971) Clq: Rapid purification method for preparation of monospecific antisera and for biochemical studies. J Immunol 106:304–313

    PubMed  CAS  Google Scholar 

  • Yonemasu K, Stroud RM (1972) Structural studies on human Clq: non-covalent and covalent subunits. Immunochemistry 9:545–554

    PubMed  CAS  Google Scholar 

  • Yonemasu K, Stroud RM, Niedermeier W, Butler WT (1971) Chemical studies on Clq, a modulator of immunoglobulin biology. Biochem Biophys Res Comm 43:1388–1394

    PubMed  CAS  Google Scholar 

  • von Zeipel G, Sjöholm A, Laurell AB (1973) Analysis of Cl subcomponents in cell culture media of HeLa cells and diploid human fetal lung fibroblasts. Acta Pathol Microbiol Scand [B] 81: 259–263

    Google Scholar 

  • Ziccardi RJ (1981) Activation of the early components of the classical complement pathway under physiologic conditions. J Immunology 126:1769–1773

    CAS  Google Scholar 

  • Ziccardi RJ, Cooper NR (1976a) Physicochemical and functional characterization of the Clr subunit of the first complement component. J Immunol 116:496–503

    PubMed  CAS  Google Scholar 

  • Ziccardi RJ, Cooper NR (1976b) Activation of Clr by proteolytic cleavage. J Immunol 116: 504–509

    PubMed  CAS  Google Scholar 

  • Ziccardi RJ, Cooper NR (1977) The subunit composition and sedimentation properties of human C1. J Immunol 118:2047–2052

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loos, M. (1983). Biosynthesis of the Collagen-like C1q Molecule and its Receptor Functions for Fc and Polyanionic Molecules on Macrophages. In: Cooper, M., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68906-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68906-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68908-6

  • Online ISBN: 978-3-642-68906-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics