Bacterial Enzymes Interacting with β-Lactam Antibiotics

  • N. H. Georgopapadakou
  • R. B. Sykes
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 67 / 2)


Development of β-lactam antibiotics over the past 40 years represents an unparalleled effort in the history of antimicrobial chemotherapy. The continual emergence of new compounds, natural, semisynthetic, and synthetic, is a tribute to the research programs being carried out around the world. Alongside the intensive search for new and improved β-lactam antibiotics has been the study of enzymes that interact with these molecules.


Antimicrob Agent Clavulanic Acid Bacterial Enzyme Substrate Profile Transpeptidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



6-Aminopenicillanic acid










5,5′-dithiobis (2-nit- \( \overline r \) obenzoic acid)


isoelectric point


methanesulfonyl fluoride


minimum inhibitory concentration




penicillin-binding protein


penicillin-sensitive enzyme


sodium dodecylsulfate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146: 837Google Scholar
  2. Albers-Schönberg G, Arison BH, Hensens OD, Hirshfield J, Hoogsten K, Kaczka EA, Rhodes RE, Kahan JS, Kahan FM, Ratcliffe RW, Walton E, Ruswinkel LJ, Morin RB, Christensen BG (1978) Structure and absolute configuration of thienamycin. J Am Chem Soc 100: 6491–6499Google Scholar
  3. Ambler RP (1975) The amino acid sequence of Staphylococcus aureus penicillinase. Biochem J 151: 197–218PubMedGoogle Scholar
  4. Ambler RP, Meadway R (1969) Chemical nature of bacterial penicillinase. Nature 222: 24–26PubMedGoogle Scholar
  5. Ambler RP, Scott GK (1978) Partial amino acid sequence of penicillinase coded by Escherichia coli plasmid R6K. Proc Natl Acad Sci USA 75: 3732–3736PubMedGoogle Scholar
  6. Anderson ES, Datta N (1965) Resistance to penicillins and its transfer in Enterobacteriaceae. Lancet i: 407–409Google Scholar
  7. Anderson JS, Meadow PM, Haskin MA, Strominger JL (1966) Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus. Arch Biochem Biophys 116: 487–515PubMedGoogle Scholar
  8. Aoki H, Sakai H, Kohsaka M, Konomi T, Hosoda J, Kubochi Y, Iguchi R, Imanaka H (1976) Nocardicin A, a new monocyclic ß-lactam antibiotic. I. Discovery, isolation and characterization. J Antibiot (Tokyo) 29: 492–500Google Scholar
  9. Appelbaum PC, Chatterton SA (1978) Susceptibility of anaerobic bacteria to ten antimicrobial agents. Antimicrob Agents Chemother 14: 371–376PubMedGoogle Scholar
  10. Beck BD, Park JT (1976) Activity of three murein hydrolases during the cell division cycle of Escherichia coli K-12 as measured in toluene-treated cells. J Bacteriol 126: 1250–1260PubMedGoogle Scholar
  11. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunologlobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67: 835–851Google Scholar
  12. Blumberg PM, Strominger JL (1972 a) Five penicillin-binding components occur in Bacillus subtilis membranes. J Biol Chem 247: 8107–8113Google Scholar
  13. Blumberg PM, Strominger JL (1972 b) Isolation by affinity chromatography of the penicillin-binding components from membranes of Bacillus subtilis. Proc Natl Acad Sci USA 69: 3751–3755Google Scholar
  14. Blumberg PM, Strominger JL (1974) Interaction of penicillin with the bacterial cell: penicillin binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 38: 291–335PubMedGoogle Scholar
  15. Blumberg PM, Yocum RR, Willoughby E, Strominger JL (1974) Binding of [14C] penicillin G to the membrane-bound and purified D-alanine carboxypeptidases from Bacillus stearothermophilus and Bacillus subtilis and its release. J Biol Chem 249: 6828–6835PubMedGoogle Scholar
  16. Bobrowski MM, Matthew M, Barth PT, Datta N, Glinter NJ, Jacob AE, Kontomichalou P, Dale JW, Smith JT (1976) A plasmid-determined ß-lactamase indistinguishable from the chromosomal ß-lactamase of E. coli. J Bacteriol 125: 149–159PubMedGoogle Scholar
  17. Bonner WM, Laskey RA (1974) A film detection method for tritium labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46: 83–88PubMedGoogle Scholar
  18. Boyd DB (1977) Transition state structures of a dipeptide related to the mode of action of ß-lactam antibiotics. Proc Natl Acad Sci USA 74: 5239–5243PubMedGoogle Scholar
  19. Braun V, Rehn K (1969) Chemical characterization, spatial distribution, and function of a lipoprotein (murein-lipoprotein) of the Escherichia coli cell wall. The specific effect of trypsin on membrane structure. Eur J Biochem 10: 426–438Google Scholar
  20. Braun V, Bosch V, Hantke K, Schaller K (1974) Structure and biosynthesis of functionally defined areas of the Escherichia coli outer membrane. Ann NY Acad Sci 235: 66–82PubMedGoogle Scholar
  21. Bristow AF, Virden R (1978) Preferential nitration with tetranitromethane of a specific tyrosine residue in penicillinase from Staphylococcus aureus PCI. Biochem J 169: 381–388PubMedGoogle Scholar
  22. Britz ML, Wilkinson RG (1978) Purification and properties of ß-lactamase from Bacteroides fragilis. Antimicrob Agents Chemother 13: 373–382PubMedGoogle Scholar
  23. Broad DF, Smith JT (1979) Release of enzymes from bacteria. J Pharm Pharmacol [Suppl] 31: 30 PGoogle Scholar
  24. Brown AG, Corbett DF, Englington AJ, Howarth TT (1977) Structures of olivanic acid derivatives MM4550 and MM12902; two new fused ß-lactams isolated from Streptomyces olivaceus. J Chem Soc Chem Common 1977: 523–525Google Scholar
  25. Bryan LE, Shahrabadi MS, VanDenElzen HM (1974) Gentamicin resistance in Pseudomonas aeruginosa: R-factor-mediated resistance. Antimicrob Agents Chemother 6: 191–199PubMedGoogle Scholar
  26. Buchanan CE, Strominger JL (1976) Altered penicillin-binding components in penicillin-resistant mutants of Bacillus subtilis. Proc Natl Acad Sci USA 73: 1816–1820PubMedGoogle Scholar
  27. Burman LG, Nordström K, Boman HK (1968) Resistance of Escherichia coli to penicillins V. Physiological comparison of two isogenic strains, one with chromosomally and one with episomally mediated ampicillin resistance. J Bacteriol 96: 438–446Google Scholar
  28. Bush K, Bonner DP, Sykes RB (1980) Izumenolide — a novel ß-lactamase inhibitor produced by Micromonospora II Biological Studies. J Antibiot (Tokyo) 33: 1262–1269Google Scholar
  29. Butterworth D, Cole M, Hanscomb G, Rolinson GN (1979) Olivanic acids, a family of betalactam antibiotics with beta-lactamase inhibitory properties produced by Streptomyces species. 1. Detection, properties and fermentation studies. J Antibiot (Tokyo) 32: 287294Google Scholar
  30. Carpenter CV, Goyer S, Neuhaus FC (1976) Steric effects on penicillin-sensitive peptidoglycan synthesis in membrane-wall system for Gaffkya homari. Biochemistry 15: 3146–3152PubMedGoogle Scholar
  31. Cartwright SJ, Coulson AFW (1979) Semisynthetic penicillinase inactivator. Nature 278: 360–361PubMedGoogle Scholar
  32. Catlin W (1975) Iodometric detection of Haemophilus influenza ß-lactamase: rapid presumptive test for ampicillin resistance. Antimicrob Agents Chemother 7: 265–270PubMedGoogle Scholar
  33. Charnas RL, Fisher J, Knowles JR (1978) Chemical studies on the inactivation of Escherichia coli R-TEM ß-lactamase by clavulanic acid. Biochemistry 17: 2185–2189PubMedGoogle Scholar
  34. Chase HA (1980) Purification of four penicillin-binding proteins from Bacillus megaterium. J Gen Microbiol 117: 211–224PubMedGoogle Scholar
  35. Chase HA, Shepherd ST, Reynolds PE (1977) Studies on the penicillin-binding components of Bacillus megaterium. FEBS Lett 76: 199–203PubMedGoogle Scholar
  36. Chase HA, Reynolds PE, Ward JB (1978) Purification and characterization of the penicillin-binding protein that is the lethal target of penicillin in Bacillus megaterium and Bacillus licheniformis. Eur J Biochem 88: 275–285PubMedGoogle Scholar
  37. Citri N, Pollock MR (1966) The biochemistry and function of beta-lactamase (penicillinase). Adv Enzymol 28: 237–323PubMedGoogle Scholar
  38. Citri N, Samuni A, Zyk N (1976) Acquisition of substrate-specific parameters during the catalytic reaction of pennicillinase. Proc Natl Acad Sci USA 73: 1048–1052PubMedGoogle Scholar
  39. Citri N, Zyk N (1965) The interaction of penicillinase with penicillins. IV: Structural aspects of catalytic and non-catalytic interactions. Biochim Biophys Acta 99: 427–441Google Scholar
  40. Cocks GT, Wilson AC (1972) Enzyme evolution in Enterobacteriaceae. J Bacteriol 110: 793–802PubMedGoogle Scholar
  41. Cole M (1969a) Hydrolysis of penicillins and related compounds by the cell-bound penicillin acylase of Escherichia coli. Biochem J 115: 733–739PubMedGoogle Scholar
  42. Cole M (1969b) Deacylation of acylamino compounds other than penicillins by the cell-bound penicillin acylase of Escherichia coli. Biochem J 115: 741–745PubMedGoogle Scholar
  43. Cole M, Savidge T, Vanderhaeghe H (1975) Penicillin acylase (assay). Methods Enzymol 25: 698–705Google Scholar
  44. Coley J, Tarelli E, Archibald AR, Baddiley J (1978) The linkage between teichoic acid and peptidoglycan in bacterial cells. FEBS Lett 88: 1–9PubMedGoogle Scholar
  45. Cornelis G, Abraham EP (1975) ß-Lactamases from Yersinia enterocolitica. J Gen Microbiol 87: 273–284PubMedGoogle Scholar
  46. Costerton JW, Cheng KJ (1975) The role of the bacterial cell envelope in antibiotic resistance. J Antimicrob Chemother 1: 363–377PubMedGoogle Scholar
  47. Couillard M, Letarte R, Pechere JC, Morin C (1979) Need of a combination of methods for identifying beta-lactamases: the case of Enterobacter. 19th Intersci Conf Antimicrob Agents Chemother, Oct 1–5, 1979, Abstract 31. Am Soc Microbiol, Washington DCGoogle Scholar
  48. Coyette J, Ghuysen JM, Binot F, Adriaens P, Meeschaert B, Vanderhaege H (1977) Interactions between ß-lactam antibiotics and isolated membranes of Streptococcus faecalis ATCC 9790. Eur J Biochem 75: 231–239PubMedGoogle Scholar
  49. Coyette J, Ghuysen J-M, Fontana R (1978) Solubilization and isolation of the membrane-bound DD-carboxypeptidase of Streptococcus faecalis ATCC 9790. Eur J Biochem 88: 297–305PubMedGoogle Scholar
  50. Coyette J, Ghuysen J-M, Fontana R (1980) The penicillin-binding proteins in Streptococcus faecalis ATCC 9790. Eur J Biochem 110: 445–456PubMedGoogle Scholar
  51. Crane LJ, Bettinger GE, Lampen JO (1973) Affinity chromatography purification of penicillinase of Bacillus licheniformis 749/C and its use to measure turnover of the cell-bound enzyme. Biochem Biophys Res Commun 50: 220–227PubMedGoogle Scholar
  52. Curtis NAC, Orr D, Ross GW, Boulton MG (1979 a) Competition of ß-lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus rettgeri, and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob Agents Chemother 16: 325–328Google Scholar
  53. Curtis NAC, Ross GW, Boulton MG (1979 b) Effect of 7-a methoxy substitution of cephalosporins upon their affinity for the penicillin-binding proteins of E. coli K12: comparison with antibacterial activity and inhibition of membrane-bound model transpeptidase activity. J Antimicrob Chemother 5: 391–398Google Scholar
  54. Curtis NAC, Boulton MG, Orr D, Ross GW (1980) The competition of a-sulfocephalosporins for the penicillin-binding proteins of Escherichia coli K12 and Pseudomonas aeruginosa - comparison with effects upon morphology. J Antimicrob Chemother 6: 189–196PubMedGoogle Scholar
  55. Curtis SJ, Strominger JL (1978) Effects of sulfhydryl reagents on the binding and release of penicillin G by D-alanine carboxypeptidase lA of Escherichia coli. J Biol Chem 253: 2584–2588PubMedGoogle Scholar
  56. Dale JW (1971) Characterization of the ß-lactamase specified by the resistance factor R- 1818 in E. coli K-12 and other gram-negative bacteria. Biochem J 123: 501–508PubMedGoogle Scholar
  57. Dale JW (1975) An inducible ß-lactamase in a strain of Escherichia coli. Antonie van Leeuwenhoek 41: 59–68PubMedGoogle Scholar
  58. Dale JW, Smith JT (1971) The purification and properties of the ß-lactamase specified by the resistance factor R-1818 in Escherichia coli and Proteus mirabilis. Biochem J 123: 493–500PubMedGoogle Scholar
  59. Dale JW, Smith JT (1974) R-factor-mediated ß-lactamases that hydrolyze oxacillin: evidence for two distinct groups. J Bacteriol 119: 351–356PubMedGoogle Scholar
  60. Dale JW, Smith JT (1976) The dimeric nature of an R-factor mediated ß-lactamase. Biochem Biophys Res Commun 68: 1000–1005PubMedGoogle Scholar
  61. Daneo-Moore L, Coyette J, Sayare M, Boothby D, Schockman GD (1975) Turnover of the cell wall peptidoglycan of Lactobacillus acidophilus. The presence of a fraction immune to turnover. J Biol Chem 250: 1348–1353Google Scholar
  62. Darland G, Birnbaum J (1977) Cefoxitin resistance to ß-lactamase: a major factor for susceptibility to Bacteroides fragilis to the antibiotic. Anitmicrob Agents Chemother 11: 725–734Google Scholar
  63. Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae. Nature 208: 239–241PubMedGoogle Scholar
  64. Datta N, Richmond MH (1966) The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem J 98: 204–209PubMedGoogle Scholar
  65. Davies RB, Abraham EP (1974) Metal cofactor requirements of ß-lactamase II. Biochem J 143: 129–135PubMedGoogle Scholar
  66. Davies RB, Abraham EP, Melling J (1974 a) Separation, purification and properties of ßlactamase I and ß-lactamase II from Bacillus cereus 569/H/9. Biochem J 143: 115–127Google Scholar
  67. Davies RB, Abraham EP, Dalgleish DG (1974b) Conformational changes in the extracellular ß-lactamase I from Bacillus cereus 569/H/9. Biochem J 143: 137–141PubMedGoogle Scholar
  68. Davies RB, Abraham EP, Fleming J, Pollock MR (1975) Comparison of ß-lactamase II from Bacillus cereus 569/H/9 with a ß-lactamase from Bacillus cereus 5/B/6. Biochem J 145: 409–411PubMedGoogle Scholar
  69. Davis RH, Linder R, Salton MRJ (1978) Solubilization and characterization of the partially purified penicillin sensitive D-alanine carboxypeptidase of Neisseria gonorrhoeae. Microbios 21: 69–80PubMedGoogle Scholar
  70. DeBell RM, Hickey TM, Uddin DE (1978) Partial characterization of a beta-lactamase from Vibrio parahaemolyticus by a new automated microiodometric technique. Antimicrob Agents Chemother 13: 165–169PubMedGoogle Scholar
  71. DelBene VE, Farra E, Weinrich EA, Brunson JW, Rubens CE (1979) ß-lactamase, ß-lactam resistance, and extrachromosomal DNA in anaerobic bacteria. In: S. Mitsuhashi (ed) Microbial drug resistance. University Park Press, Baltimore, p 301Google Scholar
  72. Durkin J-P, Viswanantha T (1978) Clavulanic acid inhibition of beta-lactamase I from Bacillus cereus 569/HH. J Antibiot (Tokyo) 31: 1162–1169Google Scholar
  73. Durkin J-P, Dimitrenko GI, Viswanantha T (1977) Reversibility of ampicillin-induced and nitrite-induced inactivation of beta-lactamase 1. Can J Biochem 55: 453–457PubMedGoogle Scholar
  74. Dyke KGH (1979) ß-Lactamases of Staphylococcus aureus. In• Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London New York, pp 291–310Google Scholar
  75. English AR, Retsema JA, Girard AE, Lynch JE, Barth WE (1978) CP-45,889, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta lactams: initial bacteriological characterization. Antimicrob Agents Chemother 14: 414–419PubMedGoogle Scholar
  76. Farrar EW, Krause JM (1970) Relationship between ß-lactamase activity and resistance of enterobacter to cephalothin. Infect Immunol 2: 610–616Google Scholar
  77. Farrar EW, Newsome JK (1973) Mechanism of synergistic effects of ß-lactam antibiotic combinations on gram-negative bacilli. Antimicrob Agents Chemother 4: 109–114PubMedGoogle Scholar
  78. Fein JE, Rogers HJ (1976) Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J Bacteriol 127: 1427–1442PubMedGoogle Scholar
  79. Finegold SM, Sutter VL (1972) Antimicrobial susceptibility of anaerobic gram-negative bacilli. In: MacPhee T (ed) Host resistance to commensal bacteria. Churchill Livingston, Edinburgh, p 275Google Scholar
  80. Fisher JF, Knowles JR (1980) The inactivation of ß-lactamase by mechanism-based reagents. In: Sandler M (ed) Enzyme inhibitors as drugs. MacMillan, London, pp 209–218Google Scholar
  81. Fisher J, Charnas RL, Knowles JR (1978) Kinetic studies on the inactivation of Escherichia coli R-TEM ß-lactamase by clavulanic acid. Biochemistry 17: 2180–2184PubMedGoogle Scholar
  82. Fisher J, Belasco JG, Khosla S, Knowles JR (1980) ß-Lactamase proceeds via an acyl intermediate. Interaction of the Escherichia coli R-TEM enzyme with cefoxitin. Biochemistry 19: 2895–2901PubMedGoogle Scholar
  83. Fleming PC, Goldner M, Glass DG (1963) Observations on the nature, distribution and significance of cephalosporinase. Lancet i: 1399–1401Google Scholar
  84. Fox GE, Stackebrandt E, Hespell RB (1980) The phylogeny of prokaryotes. Science 209: 457–463PubMedGoogle Scholar
  85. Frere JM, Ghuysen J-M, Perkins HR, Nieto M (1973 a) Molecular weight and amino acid composition of the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Biochem J 135: 463–468Google Scholar
  86. Frere JM, Ghuysen J-M, Perkins HR, Nieto M (1973 b) Kinetics of concomitant transfer and hydrolysis reactions catalyzed by the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Biochem J 135: 483–492Google Scholar
  87. Frere JM, Leyh-Bouille M, Ghuysen J-M, Perkins HR (1974 a) Interaction between ßlactam antibiotics and exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Eur J Biochem 50: 203–214Google Scholar
  88. Frere JM, Moreno R, Ghuysen J-M, Perkins RH, Dierickx L, Delcambe L (1974b) Molecular weight, amino acid composition and physiochemical properties of the exocellular DD-carboxypeptidase of Streptomyces R39. Biochem J 143: 233–240PubMedGoogle Scholar
  89. Frere JM, Ghuysen J-M, Degelaen J, Loffet A, Perkins HR (1975 a) Fragmentation of benzylpenicillin after interaction with exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61 and R39. Nature 258: 168–170Google Scholar
  90. Frere JM, Ghuysen J-M, Iwatsubo M ( 1975 b) Kinetics of interaction between exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and ß-lactam antibiotics. A choice of models. Eur J Biochem 57: 343–351Google Scholar
  91. Frere JM, Duez C, Ghuysen J-M, Vanderkerkhove J (1976) Occurrence of a serine residue in the penicillin-binding site of the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61. FEBS Lett 70: 257–260PubMedGoogle Scholar
  92. Frere JM, Geurts F, Ghuysen J-M (1978) The exocellular DD-carboxypeptidase-endopeptidase of Streptomyces albus G. Interaction with ß-lactam antibiotics. Biochem J 175: 801–805Google Scholar
  93. Fruton JS (1971) Pepsin. In: Boyer PD (ed) Hydrolysis: peptide bonds, the enzymes, 3rd edn, vol III. Academic Press, New York, p 157Google Scholar
  94. Fuad N, Frere JM, Ghuysen JM, Duez C, Iwatsubo M (1976) Mode of interaction between ß-lactam antibiotics and the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R39. Biochem J 155: 623–629PubMedGoogle Scholar
  95. Fujii-Kuriyama Y, Yamamoto M, Sugawara S (1977) Purification and properties of ß-lactamase from Proteus morganii. J Bacteriol 131: 726–734PubMedGoogle Scholar
  96. Fukagawa Y, Kubo K, Ishikura T, Kouno K (1980 a) Deacylation of PS-5, a new ß-lactam compound. 1. Microbial deacylation of PS-5. J Antibiot (Tokyo) 33: 343–348Google Scholar
  97. Fukagawa Y, Takei T, Ishikura T (1980 b) Inhibition of ß-lactamase of Bacillus lichenifor- mis 749/C by compound PS-5, a new ß-lactam antibiotic. Biochem J 185: 177–188Google Scholar
  98. Fung J, MacAlister TJ, Rothfield LI (1978) Role of murein lipoprotein in morphogenesis of the bacterial division septum: phenotypic similarity of lky D and 1po mutants. J Bacteriol 133: 1467–1471PubMedGoogle Scholar
  99. Furth A (1975) Purification and properties of a constitutive ß-lactamase from Pseudomonas aeruginosa strain Dalgleish. Biochim Biophys Acta 377: 431–443PubMedGoogle Scholar
  100. Garber N, Friedman J (1970) ß-Lactamase and the resistance of Pseudomonas aeruginosa to various penicillins and cephalosporins. J Gen Microbiol 64: 343–352PubMedGoogle Scholar
  101. Georgopapadakou NH, Liu FY (1980 a) Penicillin-binding proteins in bacteria. Antimicrob Agents Chemother 18: 148–157Google Scholar
  102. Georgopapadakou NH, Liu FY (1980 b) Binding of ß-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis - relation to antibacterial activity. Antimicrob Agents Chemother 18: 834–836Google Scholar
  103. Georgopapadakou NH, Hammarstrom S, Strominger JL (1977) Isolation of the penicillin-binding peptide from D-alanine carboxypeptidase of Bacillus subtilis. Proc Natl Acad Sci USA 74: 1009–1012PubMedGoogle Scholar
  104. Georgopapadakou NH, Liu FY, Ondetti MA (1979) Comparison of D and L isomers in 7-substituted cephalosporins. 19th Intersci Conf Antimicrob Agents Chemother, Oct 1–5, 1979, Abstract 567. Am Soc Microbiol, Washington DCGoogle Scholar
  105. Georgopapadakou NH, Liu FY, Ryono DE, Neubeck R, Ondetti MA (1981 a) Chemical modifications of Streptomyces R61 DD-carboxypeptidase active site. Eur J Biochem 115: 53–57Google Scholar
  106. Georgopapadakou NH, Liu FY, Ryono DE, Neubeck R, Gordon EM, Pluscec J, Szabo E, Ondetti MA (1981 b) A simple and sensitive assay for DD-carboxypeptidase. Manuscript in preparationGoogle Scholar
  107. Georgopapadakou NH, Smith SA, Cimarusti CM (1982) Interaction between mono- bactams and Streptomyces R61 DD-carboxypeptidase. Eur J Biochem 124: 507–512PubMedGoogle Scholar
  108. Ghuysen J-M (1977) The bacterial DD-carboxypeptidase-transpeptidase enzyme system. A new insight into the mode of action of penicillin. In: Brown WE (ed) E R Squibb lectures on chemistry of microbial products. University of Tokyo Press, TokyoGoogle Scholar
  109. Ghuysen J-M, Shockman GD (1973) Biosynthesis of peptidoglycan. In: Leive L (ed) Bacterial membranes and walls. Dekker, New York, pp 37–117Google Scholar
  110. Ghuysen J-M, Frere JM, Bouille M, Coyette J, Dusart J, Nguyen-Disteche M (1979) Use of model enzymes in the determination of the mode of action of penicillins and d3-cephalosporins. Annu Rev Biochem 48: 73–101PubMedGoogle Scholar
  111. Ghuysen J-M, Frere JM, Leyh-Bouille M (1980) Mechanistic properties and functioning of DD-carboxypeptidases. In: Mitsuhashi S (ed) ß-lactam antibiotics, vol 3. Japan Sci Soc, TokyoGoogle Scholar
  112. Giles AF, Reynolds PE (1979) Bacillus megaterium resistance accompanied by a compensatory change in penicillin-binding proteins. Nature 28: 167–168Google Scholar
  113. Glaser L, Lindsay B (1977) Relation between cell-wall turnover and cell growth in Bacillus subtilis. J Bacteriol 13: 610–619Google Scholar
  114. Goddell EW, Schwarz U (1977) Enzymes synthesizing and hydrolyzing murein in Escherichia coli. Eur J Biochem 81: 205–210Google Scholar
  115. Gorecki M, Bar-Eli A, Burstein Y, Patchornik A, Chain EB (1975) Purification of D-alanine carboxypeptidase from Escherichia coli B on a penicillin-Sepharose column. Biochem J 147: 131–137PubMedGoogle Scholar
  116. Grimont PA, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32: 221–248PubMedGoogle Scholar
  117. Hackenbeck R, Tarpay M, Tomasz A (1980) Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 17: 364–371Google Scholar
  118. Hamilton-Miller JMT, Smith JT, Knox R (1965) Interaction of cephaloridine with penicillinase-producing gram-negative bacteria. Nature 208: 235–237PubMedGoogle Scholar
  119. Hammarstrom S, Strominger JL (1975) Degradation of penicillin G to phenylacetylglycine by D-alanine carboxypeptidase from Bacillus stearothermophilus. Proc Natl Acad Sci USA 72: 3463–3467PubMedGoogle Scholar
  120. Hammes WP, Kandler 0 (1976) Biosynthesis of peptidoglycan in Gaffkya homari. The incorporation of peptidoglycan into cell wall and the direction of transpeptidation. Eur J Biochem 70: 97–106Google Scholar
  121. Harmon SA, Baldwin JN (1964) Nature of the determinant controlling penicillinase production in Staphylococcus aureus. J Bacteriol 87: 593–597PubMedGoogle Scholar
  122. Hedges RW, Jacob AE (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132: 31–40PubMedGoogle Scholar
  123. Hedges RW, Matthew M (1979) Acquisition by Escherichia coli of plasmid-borne ß-lactamases normally confined to Pseudomonas spp. Plasmid 2: 169–178Google Scholar
  124. Hedges RW, Datta N, Kontomichalou P, Smith JT (1974) Molecular specificities of R-factor determined beta-lactamases: correlation with plasmid compatibility. J Bacteriol 117: 56–62PubMedGoogle Scholar
  125. Hennessey TD (1967) Inducible ß-lactamase in Enterobacter. J Gen Microbiol 49: 277–285PubMedGoogle Scholar
  126. Ho PPK, Towner RD, Indelicato JM, Spitzer WA, Koppel GA (1972) Biochemical and microbiological studies on 6-substituted penicillins. J Antibiot (Tokyo) 25: 627–628Google Scholar
  127. Ho PPK, Towner RD, Indelicato JM, Wilham WJ, Spitzer AW, Koppel GA (1973) Biochemical and microbiological studies on 7-methoxy-cephalosporins. J Antibiot (Tokyo) 26: 313–314Google Scholar
  128. Hood JD, Box SJ, Verrall MS (1979) Olivanic acids, a family of beta-lactam antibiotics with beta-lactamase inhibitory properties produced by Streptomyces species. 2. Isolation and characterization of the olivanic acids MM-4550, MM-13902 and MM-17880 from Streptomyces olivaceus. J Antibiot (Tokyo) 32: 295–304Google Scholar
  129. Horikawa S, Ogawara H (1980) Penicillin-binding proteins in Bacillus subtilis. The effects on penicillin-binding proteins and the antibacterial activities of ß-lactams. J Antibiot (Tokyo) 33: 614–619Google Scholar
  130. Howarth TT, Brown AG, King TJ (1976) Clavulanic acid, a novel ß-lactam isolated from Streptomyces clavuligerus. J Chem Soc Chem Commun 1976: 266–267Google Scholar
  131. Imsande JJ (1970) Regulation of penicillinase synthesis: evidence for a unified model. J Bacteriol 101: 173–180PubMedGoogle Scholar
  132. Izaki K, Matsuhashi M, Strominger JL (1968) Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin sensitive enzymatic reaction in strains of Escherichia coli. J Biol Chem 243: 3180–3292PubMedGoogle Scholar
  133. Izui K, Nielsen JBK, Caulfield MP, Lampen JO (1980) Large exopenicillinase, initial extracellular form detected in cultures of Bacillus licheniformis. Biochemistry 19: 1882–1886PubMedGoogle Scholar
  134. Jacoby GA, Matthew M (1979) The distribution of ß-lactamases on Pseudomonas plasmids. Plasmid 2: 41–47PubMedGoogle Scholar
  135. Jannson JAT (1965) A direct spectrophotometric assay for penicillin ß-lactamase (penicillinase). Biochim Biophys Acta 99: 171–172Google Scholar
  136. Johnson K, Dusart J, Campbell JN, Ghuysen J-M (1973) Exocellular ß-lactamases of Streptomyces albus G and strains R39 and K11. Antimicrob Agents Chemother 3: 289–298PubMedGoogle Scholar
  137. Jones RM, Fuchs PC (1976) Identification and antimicrobial susceptibility of 250 Bacteroides fragilis subspecies tested by broth micro dilution method. Antimicrob Agents Chemother 9: 719–721PubMedGoogle Scholar
  138. Jorgensen JH, Lee JC, Alexander GA (1977) Rapid penicillinase paper strip test for detection of ß-lactamase producing Haemophilus influenzae and Neisseria gonorrhoeae. Antimicrob Agents Chemother 11: 1087–1088PubMedGoogle Scholar
  139. Kahan FM, Kropp H (1980) An antibacterial composition of thienamycin-type compound and a diepeptidase inhibitor. European Patent Application 09587CGoogle Scholar
  140. Kaminsky ZC (1963) Effect of related anionic detergents on staphylococcal penicillinase. J Bacteriol 85: 1182–1183Google Scholar
  141. Kasik JE (1979) Mycobacterial ß-lactamases. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London New York, pp 339–350Google Scholar
  142. Kasik JE, Peacham L (1968) Properties of ß-lactamases produced by three species of Mycobacteria. Biochem J 197: 675–682Google Scholar
  143. Kiener PA, Waley SG (1977) Substrate induced deactivation of penicillinases. Studies of ßlactamase I by hydrogen exchange. Biochem J 165: 279–285Google Scholar
  144. Kiener PA, Waley SG (1978) Reversible inhibitors of penicillinases. Biochem J 169: 197–204PubMedGoogle Scholar
  145. Kleppe G, Strominger JL (1979) Studies of the high molecular weight penicillin-binding proteins of Bacillus subtilis. J Biol Chem 254: 4856–4862PubMedGoogle Scholar
  146. Knott-Hunziker V, Waley SG, Orlek BS, Sammes PG (1979) Penicillinase active sites. Labeling of serine-44 in beta-lactamase I by 6-beta-bromo-penicillanic acid. FEBS Lett 9: 59–61Google Scholar
  147. Knox JR, Kelly JA, Moews PG, Murthy NS (1976) 5.5 A crystallographic structure of penicillin ß-lactamase and radius of gyration in solution. J Mol Biol 104: 865–875Google Scholar
  148. Kogut M, Pollock MR, Tridgell EJ (1956) Purification of penicillin-induced penicillinase of Bacillus cereus NRRL 569: a comparison of its properties with those of a similarly purified penicillinase produced spontaneously by a constitutive mutant. Biochem J 62: 391–401PubMedGoogle Scholar
  149. Koyasu S, Fukuda A, Okada Y (1980) The penicillin-binding proteins of Caulobacter crescentus. J Biochem 87: 363–366PubMedGoogle Scholar
  150. Kozarich JW, Strominger JL (1978) A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J Biol Chem 253: 1272–1278PubMedGoogle Scholar
  151. Kuwabara S, Abraham EP (1967) Some properties of two extracellular ß-lactamases from Bacillus cereus 569/H. Biochem J 103: 27C - 30CPubMedGoogle Scholar
  152. Kuwabara S, Lloyd PH (1971) Protein and carbohydrate moieties of a preparation of ßlactamase II. Biochem J 124: 215–220PubMedGoogle Scholar
  153. Kusher DJ, Breuil C (1977) Pennicillinase (ß-lactamase) formation by blue-green algae. Arch Microbiol 112: 219–223Google Scholar
  154. Labia R, Barthelémy M (1977) Problèmes de la determination des points isoélectriques des ß-lactamases. CR Acad Sci [D] (Paris) 284: 1729–1732Google Scholar
  155. Labia R, Peduzzi J (1978) Cinétique de l’inhibition de beta-lactamases par l’acide clavulanique. Biochim Biophys Acta 596: 572–579Google Scholar
  156. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685PubMedGoogle Scholar
  157. Lampen JO (1978) Phospholipoproteins in enzyme excretion by bacteria. In: Stanier RY, Rogers HJ, Ward T (eds) Relations between structure and function in the prokaryotic cell. Cambridge University Press, New York, pp 231–247Google Scholar
  158. Lee B (1971) Conformation of penicillin as a transition-state analog of the substrate of peptidoglycan transpeptidase. J Mol Biol 61: 463–469PubMedGoogle Scholar
  159. Letarte R, Devaud-Felix M, Pechere JC, Allard-Leprohon D (1977) Enzymatic and immunological characterization of a new cephalosporinase from Enterobacter Aerogenes. Antimicrob Agents Chemother 12: 301–305Google Scholar
  160. Leung T, Williams JD (1978) Beta-lactamases of subspecies of Bacteroides fragilis. J Antimicrob Chemother 4: 47–54PubMedGoogle Scholar
  161. Leyh-Bouille M, Coyette J, Ghuysen J-M, Idczak J, Perkins HR, Nieto M (1971) Penicillin-sensitive DD-carboxypeptidases from Streptomyces strain R61. Biochemistry 10: 2163–2170PubMedGoogle Scholar
  162. Leyh-Bouille M, Nakel M, Frere JM, Johnson K, Ghuysen J-M, Nieto M, Perkins HR (1972) Penicillin sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. Biochemistry 11: 1290–1298PubMedGoogle Scholar
  163. Lugtenberg EJJ, deHaas-Menger L, Ruyters WHM (1972) Murein synthesis and identification of cell wall precursors of temperature-sensitive lysis mutants of Escherichia coli. J Bacteriol 109: 326–335PubMedGoogle Scholar
  164. Lund F, Tybring L (1972) 6ß-Amidinopenicillanic acids — a new group of antibiotics. Nature N Biol 236: 135–137Google Scholar
  165. Makover SD, Wright RB, Telep E (1980) Penicillin binding proteins in Haemophilus influenzae. In: 80th American society for microbiology meeting. May 11–16, Abstract K189. Am Soc Microbiol, Washington DCGoogle Scholar
  166. Marquet A, Nieto M, Diaz-Maurino T (1976) Membrane-bound DD-carboxypeptidase and transpeptidase activities from Bacillus megaterium KM at pH 7. Eur J Biochem 68: 581–589PubMedGoogle Scholar
  167. Marshall MJ, Ross GW, Chanter KW, Harris MA (1972) Comparison of the substrate specificities of the ß-lactamases from Klebsiella aerogenes 1082E and Enterobacter cloacae P99. Appl Microbiol 23: 765–769PubMedGoogle Scholar
  168. Martin HH, Maskos C, Burger R (1975) D-alanyl-D-alanine carboxypeptidase in the bacterial form and L-form of Proteus mirabilis. Eur J Biochem 55: 465–473PubMedGoogle Scholar
  169. Martin WJ, Gardner M, Washington JA II (1972) In vitro antimicrobial susceptibility of anaerobic bacteria isolated from clinical specimens. Antimicrob Agents Chemother 1: 148–158PubMedGoogle Scholar
  170. Matsuhashi M, Maruyama IN, Takagaki Y, Tamaki S, Nishimura Y, Hirota Y (1978) Isolation of a mutant of Escherichia coli lacking penicillin-sensitive D-alanine carboxypeptidase IA. Proc Natl Acad Sci USA 75: 2631–2635PubMedGoogle Scholar
  171. Matsuhashi M, Tamaki S, Nakajima S, Nakagawa J, Tomioka S, Takagaki Y (1979) Properties and functions of penicillin-binding proteins and related enzymes in Escherichia coli. In: Matsuhashi S (ed) Microbial drug resistance, vol 2. Japan Sci Soc and Univ Park, Tokyo, pp 389–404Google Scholar
  172. Matthew M (1975) Isoelectric focusing studies of ß-lactamases. In: Arbuthnott JP, Beeley JA (eds) Isoelectric focusing. Butterworths, London, pp 248–253Google Scholar
  173. Matthew M (1978) Properties of the ß-lactamase specified by the pseudomonas plasmid R151. FEMS Microbiol Lett 4: 241–244Google Scholar
  174. Matthew M (1979) Plasmid-mediated ß-lactamases of gram-negative bacteria: properties and distribution. J Antimicrob Chemother 5: 349–358PubMedGoogle Scholar
  175. Matthew M, Harris AM (1976) Identification of ß-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. J Gen Microbiol 94: 55–67PubMedGoogle Scholar
  176. Matthew M, Sykes RB (1977) Properties of the ß-lactamase specified by the pseudomonas plasmid RPL11. J Bacteril 132: 341–345Google Scholar
  177. Matthew M, Harris AM, Marshall MJ, Ross GE (1975) The use of analytical isoelectric focusing for detection and identification of ß-lactamases. J Gen Microbiol 88: 169–178Google Scholar
  178. Matthew M, Hedges RW, Smith JT (1979) Types of ß-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol 138: 657–662PubMedGoogle Scholar
  179. Mays DL, Sangest FK, Cautrell WC, Evans WG (1975) Hydroxylamine determination of cephalosporins. Anal Chem 47: 2229–2234PubMedGoogle Scholar
  180. Medeiros AA, Mandel MD (1979) In vivo acquired resistance to ß-lactam antibiotics due to hyperproduction of ß-lactamase. 79th annual ASM meeting, Oct 1–5, 1979, Abstract A32. Am Soc Microbiol, Washington DCGoogle Scholar
  181. Medeiros AA, Ximenez J, Blickstein-Goldworm K, O’Brien TF, Acar J (1979) ß-lactamases of ampicillin-resistant Escherichia coli from Brazil, France, and the United States. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease. American Society for Microbiology, Washington DC, p 761Google Scholar
  182. Mehta RJ, Nash CH (1978) ß-lactamase activity in yeast. J Antibiot (Tokyo)-31: 239–240Google Scholar
  183. Melchior NH, Blom J, Tybring L, Birch-Andersen A (1973) Light and electron microscopy of the early response of Escherichia coli to 6ß-amidino-penicillanic acid (FL 1060). Acta Pathol Microbiol Scand [B] 81: 393–407Google Scholar
  184. McArthur HAI, Reynolds PE (1979 a) The solubilization of the membrane bound D-alanylD-alanine carboxypeptidase of Bacillus coagulans NCIB 9365. Biochim Biophys Acta 568: 395–407Google Scholar
  185. McArthur HAI, Reynolds PE (1979 b) Peptidoglycan carboxypeptidase and endopeptidase activities of Bacillus coagulans NCIB 9365. J Gen Microbiol 111: 327–335Google Scholar
  186. McArthur HAI, Reynolds PE (1980) Purification and properties of the D-alanyl-D-alanine carboxypeptidase of Bacillus coagulans NCIB 9365. Biochim Biophys Acta 612: 107–118PubMedGoogle Scholar
  187. Mirelman D, Sharon N (1972) Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin. Biochem Biophys Res Commun 46: 1909–1017PubMedGoogle Scholar
  188. Mirelman D, Nuchamowitz Y ( 1979 a) Biosynthesis of peptidoglycan in Pseudomonas aeruginosa. 1. The incorporation of peptidoglycan into the cell wall. Eur J Biochem 94: 541–548Google Scholar
  189. Mirelman D, Nuchamowitz Y ( 1979 b) Biosynthesis of peptidoglycan in Pseudomonas aeruginosa. 2. Mode of action of ß-lactam antibiotics. Eur J Biochem 94: 549–556Google Scholar
  190. Mirelman D, Yashouv-Gan Y, Nuchamowitz Y, Rozenhak S, Ron EZ (1978) Murein biosynthesis during a synchronous cell cycle of Escherichia coli B. J Bacteriol 134: 458–461PubMedGoogle Scholar
  191. Moore BA, Jevons S, Brammer KW (1979) Peptidoglycan transpeptidase inhibition in Pseudomonas aeruginosa and Escherichia coli by penicillins and cephalosporins. Antimicrob Agents Chemother 15: 513–517PubMedGoogle Scholar
  192. Morohoshi T, Saito T (1977) ß-Lactamase and ß-lactam antibiotics resistance in Acinetobacter anitratum (syn: A. calcoaceticus). J Antibiot (Tokyo) 30. 969–973Google Scholar
  193. Murray PR, Rosenblatt JE (1977) Penicillin resistance and penicillinase production in clinical isolates of Bacteroides melaninogenicus. Antimicrob Agents Chemother 11: 605–608PubMedGoogle Scholar
  194. Nagarajan R (1972) ß-Lactam antibiotics from Streptomyces. In: Flynn EH (ed) Cephalosporins and penicillins, chemistry and biology. Academic Press, New York London, pp 636–661Google Scholar
  195. Nagarajan R, Boeck LD, Golman M et al. (1971) ß-Lactam antibiotics from Streptomyces. J Am Chem Soc 93: 2308–2310PubMedGoogle Scholar
  196. Nakagawa J, Tamaki S, Matsuhashi M (1979) Purified penicillin binding proteins lBs from Escherichia coli membrane showing activities of both peptidoglycan polymerase and peptidoglycan crosslinking enzyme. Agric Biol Chem 43: 1379–1380Google Scholar
  197. Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock during the formation of spheroplasts. J Biol Chem 240: 3685–3692PubMedGoogle Scholar
  198. Neuhaus FC, Goyer S, Neuhaus DW (1977) Growth inhibition of Escherichia coli W by Dnorvalyl-D-alanine: an analogue of D-alanine in position 4 of the peptide subunit of peptidoglycan. Antimicrob Agents Chemother 11: 638–644PubMedGoogle Scholar
  199. Newsome SWB, Sykes RB, Richmond MH (1970) Detection of a ß-lactamase markedly active against carbenicillin in a strain of Pseudomonas aeruginosa. J Bacteriol 101: 1079–1080Google Scholar
  200. Newton GGF, Abraham EP (1956) Isolation of cephalosporin C, a penicillin-like antibiotic containing D-a-aminoadipic acid. Biochem J 62: 651–658PubMedGoogle Scholar
  201. Newton GGF, Abraham EP, Kiwabara S (1967) Preliminary observations on the formation and breakdown of cephalosporoic acids. In: Hobby GL (ed) Antimicrob Agents Chemother. Amer Soc Microbiol, Washington DC, p 449Google Scholar
  202. Nguyen-Disteche M, Ghuysen J-M, Pollock JJ, Reynolds P, Perkins HR, Coyette J, Salton MRJ (1974 a) Enzymes involved in wall peptide cross-linking in Escherichia coli K12, strain 44. Eur J Biochem 41: 447–455Google Scholar
  203. Nguyen-Disteche M, Pollock JJ, Ghuysen J-M, Puig J, Reynolds P, Perkins HR, Coyette J, Salton MRJ (1974b) Sensitivity to ampicillin and cephalothin of enzymes involved in wall peptide crosslinking in Escherichia coli K 12, strain 44. Eur J Biochem 41: 457–463PubMedGoogle Scholar
  204. Nieto M, Perkins HR, Frere JM, Ghuysen J-M (1973) Fluorescence and circular dichroism studies on the Streptomyces R61 DD-carboxypeptidase-transpeptidase. Biochem J 135: 493–505PubMedGoogle Scholar
  205. Nikaido H, Nakae T (1979) The outer membrane of gram-negative bacteria. In: Rose AH, Morris JG (eds) Advances in microbial physiology, vol 20. Academic Press, London New York, pp 163–250Google Scholar
  206. Nishida M, Mine Y, Nonoyama S, Kojo H, Goto S, Kuwahara S (1977) Nocardicin A, a new monocyclic antibiotic III. In vitro evaluation. J Antibiot (Tokyo) 30: 917–925Google Scholar
  207. Nishino T, Kozarich JW, Strominger JL (1977) Kinetic evidence for an acyl-enzyme intermediate in D-alanine carboxypeptidases of Bacillus subtilis and Bacillus stearothermophilus. J Biol Chem 252: 2934–2939PubMedGoogle Scholar
  208. Nishiura T, Kawada Y, Shiomi Y, O’Hara K, Kono M (1978) Microbial degradation of cephalothin by cephalothin-susceptible E. coli. Antimicrob Agents Chemother 13: 1036–1039PubMedGoogle Scholar
  209. Noguchi H, Matsuhashi M, Mitsuhashi S (1979) Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coli. Eur J Biochem 100: 41–49PubMedGoogle Scholar
  210. Nolan RD, Hildebrandt JF (1979) Comparison of the penicillin-binding proteins of different strains of Neisseria gonorrhoeae. Antimicrob Agents Chemother 16: 336–340PubMedGoogle Scholar
  211. Nordström K, Sykes RB (1974) Induction kinetics of beta-lactamase biosynthesis in Pseudomonas aeruginosa. Antimicrob Agents Chemother 6: 734–740PubMedGoogle Scholar
  212. Normark S, Edlund T, Grundström T, Bergström S, Wolf-Watz H (1977) Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J Bacteriol 132: 912–922Google Scholar
  213. Novick RP (1963) Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus. J Gen Microbiol 33: 121–136PubMedGoogle Scholar
  214. O’Callaghan CH, Morris A, Kirby S, Shingler AH (1972) Novel method for detection of ß-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1: 283–288PubMedGoogle Scholar
  215. Ochiai K, Yamanaka T, Kimura K, Sawada 0 (1959) Studies on inheritance of drug resistance between Shigella strains and Escherichia coli strains. Nihon Iji Shimpo 861: 34–46Google Scholar
  216. Odugbemi TO, Hafiz S, McEntegart MG (1977) Penicillinase-producing Neisseria gonorrhocae: detection by starch paper technique. Br Med J ii: 500Google Scholar
  217. Ofek I, Beachey EH (1980) Bacterial adherence. Annu Rev Int Med 25: 503–532Google Scholar
  218. Ogawara H (1975) Production and property of beta-lactamases in Streptomyces. Antimicrob Agents Chemother 8: 402–408PubMedGoogle Scholar
  219. Ogawara H, Horikawa S (1979) Purification of ß-lactamase from Streptomyces cellulosae by affinity chromatography on Blue Sepharose. J Antiobiot (Tokyo) 32: 1328–1335Google Scholar
  220. Ogawara H, Horikawa S (1980) Penicillin-binding proteins of Streptomyces cocaoi, Streptomyces olivaceus and Streptomyces clavuligerus. Antimicrob Agents Chemother 17: 1–7PubMedGoogle Scholar
  221. Ogawara H, Nozaki S (1977) Effect of acriflavine on the production of ß-lactamase in Streptomyces. J Antibiot (Tokyo) 30: 337–338Google Scholar
  222. Ogawara H, Maeda K, Umezawa H (1972) A ß-lactamase of Escherichia coli. Biochim Biophys Acta 289: 203–211PubMedGoogle Scholar
  223. Ogawara H, Horikawa S, Shimada-Miyoshi S, Yasuzawa K (1978) Production and property of beta-lactamases in Streptomyces: Comparison of the strains isolated newly and thirty years ago. Antimicrob Agents Chemother 13: 865–870Google Scholar
  224. Ogawara T, Umezawa H (1975) Bacillus cereus ß-lactamase. Reaction with N-bromosuccinimide and the properties of the product. Biochim Biophys Acta 391: 437–447Google Scholar
  225. Ohmori H, Azuma A, Suzuki Y, Hashimoto (1977) Factors involved in beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 12: 537–539Google Scholar
  226. Ohya S, Yamazaki M, Sugawara S, Matsuhashi M (1979) Penicillin-binding proteins in Proteus species. J Bacteriol 137: 474–479PubMedGoogle Scholar
  227. Okamura K, Hirata S, Okmura Y, Fukagawa Y, Shimauchi Y, Kouno K, Ishikura T, Lein J (1978). PS-5, a new ß-lactam antibiotic from Streptomyces. J Antibiot (Tokyo) 31: 480–482Google Scholar
  228. Olsson B, Dornbusch K, Nord CE (1977) Susceptibility to beta-lactam antibiotics and production of beta-lactamase in Bacteroides fragilis. Med Microbiol Immunol (Berl) 163: 183–194Google Scholar
  229. Olsson-Liljequist B, Dornbusch K, Nord CE (1979) Immunological characterization of beta-lactamases from Bacteroides fragilis. 19th Intersci Conf Antimicrob Agents Chemother, Oct 1–5, 1979, Abstract 26. Am Soc Microbiol, Washington DCGoogle Scholar
  230. Pain RH, Virden R (1979) The structural and conformational basis of ß-lactamase activity. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London New York, pp 141–180Google Scholar
  231. Park JT (1952) Uridine-5’-pyrophosphate derivatives. I. Isolation from Staphylococcus aureus. J Biol Chem 194: 877–884PubMedGoogle Scholar
  232. Patil GV, Day RA (1973) Involvement of a carboxyl group in the active site of Bacillus cereus 569/H penicillinase (ß-lactamase II). Biochim Biophys Acta 293: 490–493PubMedGoogle Scholar
  233. Perkins HR, Nieto M, Frere JM, Leyh-Bouille M, Ghuysen J-M (1973) Streptomyces DDcarboxypeptidases as transpeptidases. The specificity for amino compounds acting as carboxyl acceptors. Biochem J 131: 707–718Google Scholar
  234. Petrocheilou V, Sykes RB, Richmond MH (1977) Novel R-plasmid-mediated beta- lactamase from Klebsiella aerogenes. Antimicrob Agents Chemother 12: 126–128PubMedGoogle Scholar
  235. Phillipon A, Paul G, Labia G, Neuot P (1976) Distinction entre des ß-lactamases immunotypes 1 et 2 de Pitton grâce à une nouvelle ß-lactamine. Ann Microbiol (Paris) 127A: 487–491Google Scholar
  236. Pitton JS (1972) Mechanisms of bacterial resistance to antibiotics. In: Adrian RH (ed) Review of physiology, vol 65. Springer, Berlin Heidelberg New York, pp 15–93Google Scholar
  237. Pollock JJ, Nguyen-Disteche M, Ghuysen J-M, Coyette J, Linder R, Salton MRJ, Kim KS, Perkins HR, Reynolds P (1974) Fractionation of the DD-carboxypeptidase-transpeptidase activities solubilized from membranes of Escherichia coli K12, strain 44. Eur J Biochem 41: 439–446PubMedGoogle Scholar
  238. Pollock MR (1965) Purification and properties of penicillinase from two strains of Bacillus licheniformis: A chemical, physiochemical and physiological comparison. Biochem J 94: 666–675PubMedGoogle Scholar
  239. Pollock MR (1971) The function and evolution of penicillinase. Proc Soc Lond [Biol] 179: 385–401Google Scholar
  240. Pooley HM, Schlaeppi J-M, Karamata D (1978) Localized insertion of new cell wall in Bacillus subtilis. Nature 274: 264–266Google Scholar
  241. Pratt RF, Loosemore MJ (1978) 6-Beta-bromopenicillanic acid, a potent beta-lactamase inhibitor. Proc Natl. Acad Sci USA 75: 4145–4149Google Scholar
  242. Pratt RF, Anderson EG, Odeh I (1980) Certain monocyclic ß-lactams are ß-lactamase substrates: Nocardicin A and desthiobenzylpenicillin. Biochem Biophys Res Commun 93: 1266–1273Google Scholar
  243. Presslitz JE (1978) Mode of action of a structurally novel beta-lactam. Antimicrob Agents Chemother 14: 144–150PubMedGoogle Scholar
  244. Presslitz JE, Ray VA (1975) DD-carboxypeptidase and peptidoglycan transpeptidase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 7: 578–581PubMedGoogle Scholar
  245. Rando RR (1975) On the mechanism of action of antibiotics which act as irreversible enzyme inhibitors. Biochem Pharmacol 24: 1153–1160PubMedGoogle Scholar
  246. Rasmussen JR, Strominger JL (1978) Utilization of a depsipeptide substrate for trapping acyl-enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases. Proc Natl Acad Sci USA 75: 84–88PubMedGoogle Scholar
  247. Reading C, Cole M (1977) Clavulanic acid: A beta-lactamase inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11: 852–857PubMedGoogle Scholar
  248. Reading C, Hepburn P (1979) The inhibition of staphylococcal ß-lactamase by clavulanic acid. Biochem J 179: 67–76PubMedGoogle Scholar
  249. Reynolds PE, Shepherd ST, Chase HA (1978) Identification of the binding protein which may be the target of penicillin action in Bacillus megaterium. Nature 271: 568–570PubMedGoogle Scholar
  250. Richmond MH (1963) Purification and properties of the exopenicillinase from Staphylococcus aureus. Biochem J 88: 452–459PubMedGoogle Scholar
  251. Richmond MH (1965) Wild type variants of exopenicillinase from Staphylococcus aureus. Biochem J 94: 584–593PubMedGoogle Scholar
  252. Richmond MH, Sykes RB (1973) The ß-lactamases of gram-negative bacteria and their possible physiological role. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 9. Academic Press, London New York, pp 31–88Google Scholar
  253. Rogers HJ (1970) Bacterial growth and the cell envelope. Bacteriol Rev 34: 194–214PubMedGoogle Scholar
  254. Rogers HJ, Forsberg CW (1971) Role of autolysins in the killing of bacteria by some bactericidal antibiotics. J Bacteriol 108: 1235–1243PubMedGoogle Scholar
  255. Roupas A, Pitton JS (1974) R-factor-mediated and chromosomal resistance to ampicillin in Escherichia coli. Antimicrob Agents Chemother 5: 186–191PubMedGoogle Scholar
  256. Sabath LD, Jago M, Abraham EP (1965) Cephalosporinase and penicillinase activities of a ß-lactamase from Pseudomonas pyocyanea. Biochem J 96: 739–752PubMedGoogle Scholar
  257. Salyers AA, Wang J, Williams TD (1977) ß-Lactamase activity in strains of Bacteroides melaninogenicus and Bacteroides oralis. Antimicrob Agents Chemother 11: 142–146PubMedGoogle Scholar
  258. Samuni A (1975) A direct spectrophotometric assay and determination of Michaelis constants for the beta-lactamase reaction. Anal Biochem 63: 17–26PubMedGoogle Scholar
  259. Samuni A, Meyer AY (1978) Conformation patterns in penicillins and the penicillin-penicillinase interaction. Mol Pharmacol 14: 704–709PubMedGoogle Scholar
  260. Sawada Y, Yaginuma S, Tai M, Iyobe S, Mitsuhashi S (1975) Resistance to ß-lactam antibiotics in Pseudomonas aeruginosa. In: Mitsuhashi S, Hashimoto H (eds) Microbial drug resistance. Univ Tokyo Press, Tokyo, pp 391–397Google Scholar
  261. Sawai T, Mitsuhashi S, Yamagishi S (1968) Drug resistance of enteric bacteria. XIV. Comparison of ß-lactamases in gram-negative rod bacteria resistant to a-aminobenzylpenicillin. Jpn J Microbiol 12: 423–434Google Scholar
  262. Sawai T, Saito T, Mitsuhashi S (1970) A stereoisomer of benzylpenicillin as substrate and inducer for ß-lactamases. J Antibiot (Tokyo) 23: 488–492Google Scholar
  263. Sawai T, Yamagishi S, Mitsuhashi S (1973) Penicillinases of Klebsiella pneumoniae and their phylogenetic relationship to penicillinases mediated by R-factors. J Bacteriol 115: 1045–1054PubMedGoogle Scholar
  264. Schenkein DP, Pratt RF (1980) Phenylpropynal, a specific, irreversible, non-beta-lactam inhibitor of beta-lactamases. J Biol Chem 255: 45–48PubMedGoogle Scholar
  265. Schilf W, Martin HH (1980) Purification of two DD-carboxypeptidases/transpeptidases with different penicillin sensitivities from Proteus mirabilis. Eur J Biochem 105: 361–370PubMedGoogle Scholar
  266. Schilf W, Frere P, Frere J-M, Martin HH, Ghuysen J-M, Adriaens P, Meesschaert B (1978) Interaction between penicillin and the DD-carboxypeptidase of the unstable L-form of Proteus mirabilis strain 19. Eur J Biochem 85: 325–330PubMedGoogle Scholar
  267. Schleifer KH, Kandler 0 (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477Google Scholar
  268. Schwartz JL, Schwartz SP (1979) Production of ß-lactamase by non-Streptomyces Actinomycetales. Antimicrob Agents Chemother 15: 123–125PubMedGoogle Scholar
  269. Scott GK (1973) Structure and mechanism of ß-lactamase from Escherichia coli. Biochem Soc Trans 1: 159–162Google Scholar
  270. Shepherd ST, Chase HA, Reynolds PR (1977) The separation and properties of two penicillin-binding proteins from Salmonella typhimurium. Eur J Biochem 78: 521–532PubMedGoogle Scholar
  271. Sherratt DJ, Collins JF (1973) Analysis by transformation of the penicillinase system in Bacillus licheniformis 749/C. J Gen Microbiol 76: 217–230PubMedGoogle Scholar
  272. Sherrill JM, McCarthy LR (1979) Cephalosporinase activity within the Bacteroides fragilis group and in strains of B. melaninogenicus and B. oralis. 19th Intersci Conf Antimicrob Agents and Chemotherapy, 1–5 Oct, 1979, Abstract 28. Am Soc Microbiol, Washington DCGoogle Scholar
  273. Shockman GD, Daneo-Moore L, Higgins ML (1974) Problems of cell wall and membrane growth, enlargement, and division. Ann NY Acad Sci 235: 161–197PubMedGoogle Scholar
  274. Simons K, Servas M, Garoff H, Helenius A (1978) Membrane-bound and secreted forms of penicillinase from Bacillus licheniformis. J Mol Biol 126: 673–690PubMedGoogle Scholar
  275. Smith JT (1963) Penicillinase and ampicillin resistance in a strain of Escherichia coli. J Gen Microbiol 30: 299–306 (1963)Google Scholar
  276. Smith JT, Wyatt JM (1974) Relation of R factor and chromosomal ß-lactamase with the periplasmic space. J Bacteriol 117: 931–939PubMedGoogle Scholar
  277. Smith JT, Bremmer DA, Datta N (1974) Ampicillin resistance of Shigella sonnei. Antimicrob Agents Chemother 6: 418–421PubMedGoogle Scholar
  278. Smith JT, Hamilton-Miller MJT (1963) Penicillinases from gram-positive and gram-negative bacteria: a thermodynamic difference. Nature 197: 769–770PubMedGoogle Scholar
  279. Spratt BG (1975) Distinct penicillin-binding proteins involved in the division, elongation and shape of Escherichia coli K12. Proc Natl Acad Sci USA 72: 2999–3003PubMedGoogle Scholar
  280. Spratt BG (1977a) Properties of the penicillin-binding proteins of Escherichia coli k 12. Eur J Biochem 72: 341–352PubMedGoogle Scholar
  281. Spratt BG (1977 b) Comparison of the binding properties of two 6ß-amidinopenicillanic acid derivatives that differ in their physiological effects on Escherichia coli. Antimicrob Agents Chemother 11:161–166PubMedGoogle Scholar
  282. Spratt BG (1978) Mechanism of action of penicillin. Sci Progr Oxford 65: 101–128Google Scholar
  283. Spratt BG (1979) Identification of the killing targets for ß-lactam antibiotics in Escherichia coli. In: Matsuhashi (ed) Microbial drug resistance, vol 2. Japan Sci Soc, Univ Park, To-kyo, pp 349–361Google Scholar
  284. Spratt BG, Pardee AB (1975) Penicillin-binding proteins and cell-shape in E. coli. Nature 254: 516–517PubMedGoogle Scholar
  285. Spratt BG, Strominger JL (1976) Indentification of the major penicillin-binding proteins of Escherichia coli as D-alanine carboxypeptidase IA. J Bacteriol 127: 660–663PubMedGoogle Scholar
  286. Spratt BG, Jobanputra U, Schwarz U (1977) Mutants of Escherichia coli which lack a component of penicillin-binding protein 1 are viable. FEBS Lett 79: 374–378PubMedGoogle Scholar
  287. Stapley EO, Cassidy P, Currie SA, Daoust D, Goegelman R, Hernandez S, Jackson M, Mata JM, Miller AK, Monaghan RL, Tunac JB, Zimmerman SB, Hendlin D (1977) Epithienamycins: biological studies of a new family of ß-lactam antibiotics. In: 17th Intersci Conf Antimicrob Agents Chemother, 12–14 Oct, 1977, Abstract 80. Am Soc Microbiol, Washington DCGoogle Scholar
  288. Suginaka H, Blumberg PM, Strominger JL (1972) Multiple penicillin binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus and Escherichia coli. J Biol Chem 247: 5279–5288PubMedGoogle Scholar
  289. Sutcliffe JG (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci USA 75: 3737–3741PubMedGoogle Scholar
  290. Suzuki H, Nishimura Y, Hirota Y (1978) On the process of cellular division in Escherichia coli: A series of mutants of E. coli altered in the penicillin-binding properties. Proc Natl Acad Sci USA 75: 664–668PubMedGoogle Scholar
  291. Suzuki H, vanHeijenoort Y, Tamura T, Mizoguchi J, Hirota Y, vanHeijenoort J (1980) In vitro peptidoglycan polymerization catalyzed by penicillin binding protein lb of Escherichia coli K12. FEBS Lett 110:245–249Google Scholar
  292. Sykes RB, Bush K (1982) Physiology, biochemistry and inactivation of ß-lactamases. In: Gorman M, Morin RB (eds) ß-Lactam antibiotics, chemistry and biology. Academic Press, New York Vol. 3: 155–207Google Scholar
  293. Sykes RB, Matthew M (1976) The ß-lactamases of gram-negative bacteria on their role in resistance to ß-lactam antibiotics. J Antimicrob Chemother 2: 115–157PubMedGoogle Scholar
  294. Sykes RB, Matthew M (1979) Detection, assay and immunology of ß-lactamases. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London New York, pp 17–49Google Scholar
  295. Sykes RB, Percival A (1978) Studies on gonococcal ß-lactamases. In: Brooks GF, Gotschlick EC, Holmes KK, Sawyer WD, Yound FE (eds) Immunobiology of Neisseria gonorrhoeae. Am Soc Microbiol, Washington DC, p 68Google Scholar
  296. Sykes RB, Richmond MH (1970) Intergeneric transfer of a ß-lactamase gene between Ps. aeruginosa and E. coli. Nature 226: 952–954PubMedGoogle Scholar
  297. Sykes RB, Richmond MH (1971) R-factors, beta-lactamase and carbenicillin-resistant Pseudomonas aeruginosa. Lancet ii: 342–344Google Scholar
  298. Sykes RB, Smith JT (1979) Biochemical aspects of ß-lactamases from gram-negative organisms. In: Hamilton-Miller JMT, Smith JT (eds) Beta-lactamases. Academic Press, London New York, pp 369–401Google Scholar
  299. Sykes RB, Matthew M, O’Callaghan CH (1975) R-factor mediated ß-lactamase production by Haemophilus influenzae. J Med Microbiol 8: 437–441PubMedGoogle Scholar
  300. Sykes RB, Bonner DP, Bush K, Georgopapadakou NH (1982) Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic Gram-negative bacteria. Antimicrob Agents Chemother 21: 85–92PubMedGoogle Scholar
  301. Szewczuk A, Siewinski M, Slowinska R (1980) Colorimetric assay of penicillin amidase ac- tivity using phenylacetylaminobenzoic acid as substrate. Anal Biochem 103: 166–169PubMedGoogle Scholar
  302. Tally FP, O’Keefe JP, Sullivan NM, Gorbach SL (1977) Inactivation of cephalosporins by Bacteroides fragilis. Proc 10th int congr chemother vol 1, pp 487–489Google Scholar
  303. Tamaki S, Nakajima S, Matsuhashi M (1977) Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-1Bs and in enzyme activity for peptidoglycan synthesis in vitro. Proc Natl Acad Sci USA 74: 5472–5476PubMedGoogle Scholar
  304. Tamaki S, Nakagawa J, Maruyama IN, Matsuhashi M (1978) Supersensitivity to ß-lactam antibiotics in Escherichia coli caused by D-alanine carboxypeptidase lA mutation. Agric Biol Chem 42: 2147–2150Google Scholar
  305. Tamaki S, Matsuzawa H, Matsuhashi M (1980) Cluster of mrd A and mrd B genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. J Bacteriol 141: 52–57PubMedGoogle Scholar
  306. Tamura T, Imae Y, Strominger JL (1976) Purification to homogeneity and properties of two D-alanine carboxypeptidases I from Escherichia coli. J Biol Chem 251: 414–423PubMedGoogle Scholar
  307. Thatcher DR (1975) The partial amino acid sequence of the extracelllar ß-lactamase I of Bacillus cereus 569/H. Biochem J 147: 313–326PubMedGoogle Scholar
  308. Thomas R (1979) The microbial metabolism of penicillin V sulfoxide and its its possible rel- evance to the mode of action of penicillin. JCS Chem Commun 1979: 1176–1177Google Scholar
  309. Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54: 1133–1141PubMedGoogle Scholar
  310. Tomasz A, Waks S (1975) Mechanism of action of penicillin: Triggering of the pneumococcal autolytic enzyme by inhibition of cell wall synthesis. Proc Nat Acad Sci USA 72: 4162–4166Google Scholar
  311. Umbreit JN, Strominger JL (1973) D-Alanine carboxypeptidase from Bacillus subtilis membranes. I. Purification and characterization. J Biol Chem 248: 6759–6766Google Scholar
  312. Vesterberg 0 (1973) Isoelectric focusing of proteins in thin layers of polyacrylamide gel. Sci Tools 20: 22–28Google Scholar
  313. Virden R, Bristow AF, Pain RH (1978) Reversible inhibition of penicillinase by quinacillin. Evaluation of mechanisms involving two conformational states of the enzyme. Biochem Biophys Res Commun 82: 951–956PubMedGoogle Scholar
  314. VonDaehne W (1980) 6ß-Halopenicillanic acids, a group of ß-lactamase inhibitors.J Antibiot (Tokyo) 33:451–452Google Scholar
  315. Vosberg H-P, Hoffman-Berling H (1971) DNA synthesis in nucleotide-permeable Escherichia coli cells. I. Preparation and properties of ether-treated cells. J Mol Biol 58: 739–759Google Scholar
  316. Waley SG (1974) A spectrophotometric assay for ß-lactamase action on penicillins. Biochem J 139: 789–790PubMedGoogle Scholar
  317. Waley SG (1975) The pH-dependence and group modification of ß-lactamase I. Biochem J 149: 547–551PubMedGoogle Scholar
  318. Wallace RJ, Vance P, Weissfeld A, Martin R (1978) Beta-lactamase production and resistance of beta-lactam antibiotics in Nocardia. Antimicrob Agents Chemother 14: 704–709PubMedGoogle Scholar
  319. Waxman DJ, Strominger JL (1979) Cephalosporin-sensitive penicillin-binding proteins of Staphylococcus aureus and Bacillus subtilis active in the conversion of 14C-penicillin to 14C-phenylacethlglycine. J Biol Chem 254: 2056–2061Google Scholar
  320. Waxman DJ, Strominger JL (1980) Sequence of active-site peptides from the penicillin-sensitive D-alanine carboxypeptidase of Bacillus subtilis. Mechanism of penicillin action and sequence homology to beta-lactamases. J Biol Chem 255: 3964–3976Google Scholar
  321. Waxman DJ, Yocum RR, Strominger JL (1980) Penicillins and cephalosporins are active site-directed acylating agents. Evidence in support of the substrate-analog hypothesis. Philos Trans R Soc (Lond) B289–271Google Scholar
  322. Weston A, Ward JB, Perkins HR (1977) Biosynthesis of peptidoglycan in wall plus membrane preparations from Micrococcus luteus: Direction of chain extension, lengths of chains and effect of penicillin on cross-linking. J Gen Microbiol 99: 171–181Google Scholar
  323. Williamson R, Hackenbeck R, Tomasz A (1980) The penicillin-binding proteins of Streptococcus pneumoniae grown under lysis permissive and lysis-protective (tolerant) conditions. FEMS Microbiol Lett 7: 127–131Google Scholar
  324. Wust J, Wilkins TD (1978) Effect of clavulanic acid on anaerobic bacteria resistant to betalactam antibiotics. Antimicrob Agents Chemother 13: 130–133PubMedGoogle Scholar
  325. Yaginuma S, Sawai T, Ono H, Yamagishi S, Mitsuhashi S (1973) Biochemical properties of a cephalosporin ß-lactamase from Pseudomonas aeruginosa. Jpn J Microbiol 17: 141–149PubMedGoogle Scholar
  326. Yamagishi S, O’Hara K, Sawai T, Mitsuhashi S (1979) The purification and properties of penicillin ß-lactamases mediated by transmissible R-factors in Escherichia coli. J Biochem 66: 11–20Google Scholar
  327. Yamamoto S, Lampen JO (1976) Purification of plasma membrane penicillinase from Bacillus licheniformis 749/C and comparison with exoenzyme. J Biol Chem 251: 4095–4101PubMedGoogle Scholar
  328. Yamasaki M, Aono R, Tamura G (1976) FL 1060 binding protein of Escherichia coli is probably under the control of adenosine 3’,5’-cyclic monophosphate. Agric Biol Chem 40: 1665–1667Google Scholar
  329. Yano K, Suzaki K, Saito M, Toda M, Saito T, Mitsuhashi S (1979) In vitro and in vivo antibacterial activities of YM-09330, a new cephamycin derivative. 19th intersci conf antimicrob agents chemother, 1–5 Oct 1979, Abstract 564. Am Soc Microbiol, Washington DCGoogle Scholar
  330. Yocum RR, Blumberg PM, Strominger JL (1974) Purification and characterization of the thermophilic D-alanine carboxypeptidase from membranes of Bacillus stearothermophilus. J Biol Chem 249: 4863–4871PubMedGoogle Scholar
  331. Yocum RR, Waxman DJ, Rasmussen JR, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Proc Natl Acad Sci USA 76: 2730–2734PubMedGoogle Scholar
  332. Yoshida T, Norisada M, Matsuura S, Nagata W, Kuwabara S (1978) 6059-S, a new parenterally active 1-oxacephalosporin: (1) Microbiological studies. In: 18th intersci conf antimicrob agents chemother, 4–6 Oct 1978, Abstract 151. Am Soc Microbiol, Washington DCGoogle Scholar
  333. Young FR, Mayer L (1979) Genetic determinants of microbial resistance to antibiotics Rev Infect Dis 1: 55–62PubMedGoogle Scholar
  334. Zyk N, Citri N (1968) The interaction of penicillinase with penicillins. VII. Effect of specific antibodies on conformative response. Biochim Biophys Acta 159: 327–339PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • N. H. Georgopapadakou
  • R. B. Sykes

There are no affiliations available

Personalised recommendations