Pharmakologie und klinische Anwendung kreislaufwirksamer Medikamente

  • Jörg Tarnow

Zusammenfassung

Das Spektrum therapeutischer Möglichkeiten bei den verschiedenen Störungen der Herzkreislauffunktion ist in den letzten Jahren erheblich größer geworden. Die Fortschritte der Pharmakologie haben sich dabei nicht nur auf die Entwicklung weiterer positiv inotrop wirkender Substanzen wie Dobutamin oder Amrinon beschränkt, sondern auch neue therapeutische Aspekte bei der Anwendung von β-Rezeptorenblockern, Calcium-Antagonisten, Vasodilatatoren und der Kombination verschiedener kreislaufwirksamer Pharmaka erbracht. Besonders im Verlauf herzchirurgischer Eingriffe muß zu verschiedenen Zeitpunkten mit therapiebedürftigen hämodynamischen Störungen gerechnet werden. Einflüsse der Anaesthesie, des operativen Eingriffes, der Kardioplegie und der extrakorporalen Zirkulation können als auslösende Ursachen schwerwiegender Störungen der Herz- und Kreislauffunktion in Betracht kommen. Bei der Therapie solcher Störungen darf jedoch nicht übersehen werden, daß die Anwendung kreislaufwirksamer Pharmaka auch mit Nachteilen und Gefahren verbunden ist. Eine schematische Anwendung z.B. von Katecholaminen kann mehr Schaden anrichten als Nutzen bringen. Vor Beginn jeder Therapie mit kardiovaskulär wirksamen Medikamenten müssen deshalb die zugrunde liegenden Mechanismen einer Kreislaufdepression analysiert und andere nicht primär kardiale Störungen (z. B. Hypovolämie, Acidose, Anämie oder Hypoxie) beseitigt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Goldberg, L.I.: Cardiovascular and renal actions of dopamine: Potential clinical applications. Pharmacol. Rev. 24:1 (1972)PubMedGoogle Scholar
  2. 2.
    McNay, J.L., Goldberg, L.I.: Comparison of the effects of dopamine, isoproterenol, norepinephrine and bradykinin on canine renal and femoral blood flow. J. Pharmacol. Exp. Therap. 151:23 (1966)Google Scholar
  3. 3.
    Goldberg, L.I.: Recent advances in the pharmacology of catecholamines. Intens. Care Med. 3:233 (1977)Google Scholar
  4. 4.
    McDonald, R.H., Goldberg, L.I., McNay, J.L., et al.: Augmentation of sodium excretion and blood flow by dopamine in man. Clin. Res. 11:248 (1963)Google Scholar
  5. 5.
    McDonald, R.H., Goldberg, L.I., McNay, J.L., et al.: Effects of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J. Clin. Invest. 43:1116 (1964)PubMedGoogle Scholar
  6. 6.
    Eble, J.N.: A proposed mechanism for the depressor effect of dopamine in the anesthetized dog. J. Pharmacol. Exp. Ther. 145:64 (1964)PubMedGoogle Scholar
  7. 7.
    v. Essen, C.: Effects of dopamine, noradrenaline and 5-hydroxy-tryptamine on the cerebral blood flow in the dog. J. Pharm. Pharmacol. 24:668 (1972)Google Scholar
  8. 8.
    Schuelke, D.M., Mark, A.L., Schmid, P.G., et al.: Coronary vasodilatation produced by dopamine after adrenergic blockade. J. Pharmacol. Exp. Ther. 176:320 (1971)PubMedGoogle Scholar
  9. 9.
    Yeh, B.K., McNay, J.L., Goldberg, L.I.: Attenuation of dopamine renal and mesenteric vasodilation by haloperidol: Evidence for a specific receptor. J. Pharmacol. Exp. Ther. 168:303 (1969)PubMedGoogle Scholar
  10. 10.
    Goldberg, L.I., Yeh, B.K.: Attenuation of dopamine-induced renal vasodilation in the dog by phenothiazines. Eur. J. Pharmacol. 15:36 (1971)PubMedGoogle Scholar
  11. 11.
    Goldberg, L.I.: Dopamine-clinical uses of an endogenous catecholamine. N. Engl. J. Med. 291:707 (1974)PubMedGoogle Scholar
  12. 12.
    Brooks, H.L., Stein, P.D., Matson, J.L., et al.: Dopamine-induced alterations in coronary hemodynamics in dogs. Circ. Res. 24:699 (1969)PubMedGoogle Scholar
  13. 13.
    Cobb, F.R., McHale, P.A., Bache, R.J., et al.: Coronary and systemic hemodynamic effects of dopamine in the awake dog. Am. J. Physiol. 222:1355 (1972)PubMedGoogle Scholar
  14. 14.
    Crexells, C., Bourassa, M.G., Biron, P.: Effects of dopamine on myocardial metabolism in patients with ischemic heart disease. Cardiovasc. Res. 7:438 (1973)PubMedGoogle Scholar
  15. 15.
    Mueller, H.S., Evans, R., Ayres, S.M.: Effects of dopamine on hemodynamics and myocardial metabolism in shock following acute myocardial infarction. Circulation 57:361 (1978)PubMedGoogle Scholar
  16. 16.
    Nayler, W.G., Mclnnes, I., Stone, J., et al.: Effect of dopamine on coronary vascular resistance and myocardial function. Cardiovasc. Res. 5:161 (1971)PubMedGoogle Scholar
  17. 17.
    Vatner, S.F., Millard, R.W., Higgins, C.B.: Coronary and myocardial effects of dopamine in the conscious dog: Parasympatholytic augmentation of pressor and inotropic actions. J. Pharmacol. Exp. Ther. 187:280 (1973)PubMedGoogle Scholar
  18. 18.
    Ramdohr, B., Schüren, K., Biamino, G. et al.: Der Einfluß von Dopamin auf die Hämodynamik und Nierenfunktion bei der schweren Herzinsuffizienz. Klin. Wschr. 51:552 (1973)Google Scholar
  19. 19.
    Schröder, R.: New aspects of the treatment of haemodynamic complications in acute myocardial infarction. Drug Res. 27:722 (1977)Google Scholar
  20. 20.
    Loeb, H.S., Bredakis, J., Gunnar, R.M.: Superiority of dobutamine over dopamine for augmentation of cardiac output in patients with chronic low output cardiac failure. Circulation 55:375 (1977)PubMedGoogle Scholar
  21. 21.
    Leier, C., Heban, P., Huss, P., et al.: Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathy heart failure. Circulation 58:466 (1978)PubMedGoogle Scholar
  22. 22.
    Hess, W., Klein, W., Müller-Busch, C., et al.: Haemodynamic effects of dopamine and dopamine combined with nitroglycerin in patients subjected to coronary bypass surgery. Br. J. Anaesth. 51:1063 (1979)PubMedGoogle Scholar
  23. 23.
    Cyran, J., Kühnl, C., Zähringer, J., et al.: Die Änderung der Hämodynamik des Herzens unter dem kombinierten Einfluß von Nitroglycerin und Dopamin bei hochgradiger Linksherzinsuffizienz. Z. Kardiol. 67:759 (1978)PubMedGoogle Scholar
  24. 24.
    Ramdohr, B., Schröder, R.: Hemmung der Dopamin-induzierten arteriellen Hypoxämie durch Haloperidol. Klin. Wschr. 51:571 (1973)PubMedGoogle Scholar
  25. 25.
    Huckauf, H., Ramdohr, B., Schröder, R.: Dopamininduzierte arterielle Hypoxie. In: R. Schröder (Hrsg.): Dopamin, S. 129. Schattauer, Stuttgart-New York 1975Google Scholar
  26. 26.
    Tuttle, R.R., Mills, J.: Dobutamine: Development of a new catecholamine to selectively increase cardiac contractility. Circ. Res. 36:185 (1975)PubMedGoogle Scholar
  27. 27.
    Sakamoto, R., Yamada, T.: Hemodynamic effects of dobutamine in patients following open heart surgery. Circulation 55:525 (1977)PubMedGoogle Scholar
  28. 28.
    Robie, N.W., Nutter, D.O., Moody, C.I., et al: In vivo analysis on adrenergic receptor activity of dobutamine. Circ. Res. 34:663 (1974)PubMedGoogle Scholar
  29. 29.
    Goldberg, L.I., Hsieh, Y.-Y., Resnekov, L.: Newer catecholamines for treatment of heart failure and shock: An update on dopamine and a first look at dobutamine. Progr. Cardiovasc. Dis. 19:327 (1977)Google Scholar
  30. 30.
    Sonnenblick, E.H., Frishman, W.H., LeJemtel, T.H.: Dobutamine: A new synthetic cardioactive sympathetic amine. N. Engl. J. Med. 300:17 (1979)PubMedGoogle Scholar
  31. 31.
    Wirtzfeld, A., Klein, G., Delius, W. et al: Dopamin und Dobutamin in der Behandlung der schweren Herzinsuffizienz. Dtsch. Med. Wschr. 103:1915 (1978)PubMedGoogle Scholar
  32. 32.
    Vatner, S.F., McRitchie, R.J., Braunwald, E.: Effects of dobutamine on left ventricular performance, coronary dynamics, and distribution of cardiac output in conscious dogs. J. Clin. Invest. 53:1265 (1974)PubMedGoogle Scholar
  33. 33.
    Robie, N.W., Goldberg, L.I.: Comparative systemic and regional hemodynamic effects of dopamine and dobutamine. Am. Heart J. 90:340 (1975)PubMedGoogle Scholar
  34. 34.
    vasu, M.A., O’Keefe, D.D., Kapellakis, G.Z., et al.: Myocardial oxygen consumption and hemodynamic effects of dobutamine, epinephrine and isoproterenol. Fed. Proc. 34:435 (1975)Google Scholar
  35. 35.
    Hess, W., Brückner, J. B., Schmidt, D., et al.: A comparison of cardiovascular effects of dobutamine and dopamine. Z Kardiol. 66:537 (1977)PubMedGoogle Scholar
  36. 36.
    Vatner, S.F., McRitchie, R.J., Maroko, P.R., et al.: Effects of catecholamines, exercise, and nitroglycerin on the normal and ischemic myocardium in conscious dogs. J. Clin. Invest. 54: 563 (1974)PubMedGoogle Scholar
  37. 37.
    Willerson, J.T., Hutton, I., Watson, J.T., et al.: Influence of dobutamine on regional myocardial blood flow and ventricular performance during acute and chronic myocardial ischemia in dogs. Circulation 53: 828 (1976)PubMedGoogle Scholar
  38. 38.
    Tuttle, R.R., Pollack, G.D., Todd, G., et al.: The effect of dobutamine on cardiac oxygen balance, regional blood flow, and infarction severity after coronary artery narrowing in dogs. Circ. Res. 41: 357 (1977)PubMedGoogle Scholar
  39. 39.
    Gillespie, T.A., Ambos, H.D., Sobel, B.E., et al.: Effects of dobutamine in patients with acute myocardial infarction. Am. J. Cardiol. 39: 588 (1977)PubMedGoogle Scholar
  40. 39a.
    Sethna, D.H., Gray, R.J., Moffitt, E.A., et al.: Dobutamine and cardiac oxygen balance in patients following myocardial revascularization. Anesth. Analg. 61:917 (1982)PubMedGoogle Scholar
  41. 40.
    Loeb, H.S., Kahn, M., Klodnycky, M.L., et. al.: Hemodynamic effects of dobutamine in man. Circ. Shock 2: 29 (1975)Google Scholar
  42. 41.
    Beregovich, J., Bianchi, C., D’Angelo, R., et al.: Haemodynamic effects of a new inotropic agent (dobutamine) in chronic cardiac failure. Br. Heart J. 37: 629 (1975)PubMedGoogle Scholar
  43. 42.
    Akhtar, N., Mikulic, E., Cohn, J.N., et al.: Hemodynamic effect of dobutamine in patients with severe heart failure. Am. J. Cardiol. 36: 202 (1975)PubMedGoogle Scholar
  44. 43.
    Delius, W., Wirtzfeld, A., Sebening, H., et al.: Hämodynamische Wirkung von Dobutamin bei Patienten mit Herzinsuffizienz. Dtsch. Med. Wschr. 101: 1747 (1976)PubMedGoogle Scholar
  45. 44.
    Leier, C.V., Webel, J., Bush, C.A.: The cardiovascular effects of the continuous infusion of dobutamine in patients with severe cardiac failure. Circulation 56: 468 (1977)PubMedGoogle Scholar
  46. 45.
    Tinker, J.H., Tarhan, S., White, R.D., et al.: Dobutamine for inotropic support during emergence from cardiopulmonary bypass. Anesthesiology 44: 281 (1976)PubMedGoogle Scholar
  47. 46.
    Steen, P.A., Tinker, J.H., Pluth, J.R., et al.: Efficacy of dopamine, dobutamine, and epinephrine during emergence from cardiopulmonary bypass in man. Circulation 57: 378 (1978)PubMedGoogle Scholar
  48. 47.
    Schneider, R.C., Sheets, W.C., Triantafillou, A., et al.: Hemodynamic effects of dobutamine in cardiac surgical patients. Anesthesiology 51: SI 10 (1979)Google Scholar
  49. 48.
    Piepenbrock, S., Hempelmann, G., Reichelt, W., et al.: Hämodynamische und selektive vaskuläre Effekte von Dobutamin während und nach herzchirurgischen Eingriffen. Anaesthesist 28:307 (1979)PubMedGoogle Scholar
  50. 49.
    Hess, W., Brückner, J.B., v. Faber du Faur, J., et al.: Hämodynamische Wirkungen von Dobutamin und Dopamin bei Patienten mit koronarer Herzkrankheit. Anaesthesist 28:316 (1979)PubMedGoogle Scholar
  51. 50.
    Jarman, R.H., Brooks, J.L., Kaplan, J.A., et al.: Dobutamine responses in patients taking propranolol. Anesthesiology 51:S111 (1979)Google Scholar
  52. 51.
    Rao, T.L., El-Etr, A.A., Balasaraswathi, K., et al: Dobutamine: Hemodynamic effects in patients treated with and without propranolol. Anesthesiology 51:S154 (1979)Google Scholar
  53. 52.
    Powell, W.J., Skinner, N.S.: Effect of the catecholamines on ionic balance and vascular resistance in skeletal muscle. Am. J. Cardiol. 18:73 (1966)PubMedGoogle Scholar
  54. 53.
    Coffin, L.H., Ankeney, J.L., Beheler, E.M.: Experimental study and clinical use of epinephrine for treatment of low cardiac output syndrome. Circulation 33 (Suppl. I): 1–78 (1966)Google Scholar
  55. 54.
    Innes, I.R., Nickerson, M.: Norepinephrine, epinephrine, and the sympathomimetic amines. In: L.S. Goodman, A. Gilman (eds.): The pharmacological basis of therapeutics, 5th edition, p. 477. MaCmillan, New York 1975Google Scholar
  56. 55.
    Hess, W.: Kreislaufwirkungen von Katecholaminen und Vasodilatatoren bei koronar- chirurgischen Patienten. Habilitationsschrift, Berlin 1980Google Scholar
  57. 56.
    Zaimis, E.: Vasopressor drugs and catecholamines. Anesthesiology 29:732 (1968)PubMedGoogle Scholar
  58. 57.
    Kones, R.J.: The catecholamines: Reappraisal of their use for acute myocardial infarction and low cardiac output syndromes. Crit. Care Med. 1:203 (1973)PubMedGoogle Scholar
  59. 58.
    Dixon, D.W., Loeb, H.S., Gunnar, R.M.: Use of catecholamines in acute myocardial infarction. Herz 4:385 (1979)PubMedGoogle Scholar
  60. 59.
    Lesch, M.: Inotropic agents and infarct size. Theoretical and practical considerations. Am. J. Cardiol. 37:508 (1976)PubMedGoogle Scholar
  61. 60.
    Shubin, H., Weil, M.H.: The hemodynamic effects of vasopressor agents in shock due to myocardial infarction. Am. J. Cardiol. 15:147 (1965)Google Scholar
  62. 61.
    Gunnar, R.M., Loeb, H.S., Pietras, R.J., et al.: The hemodynamic effects of myocardial infarction and results of therapy. Med. Clin. North. Am. 54:235 (1970)PubMedGoogle Scholar
  63. 62.
    Smith, E.R., Redwood, D.R., McCarron, W.E., et al.: Coronary artery occlusion in the conscious dog. Effects of alterations in arterial pressure produced by nitroglycerin, hemorrhage, and alpha-adrenergic agonists on the degree of myocardial ischemia. Circulation 47:51 (1973)PubMedGoogle Scholar
  64. 63.
    Hirshfeld, J.W., Borer, J.S., Goldstein, R.E., et al.: Reduction in severity and extent of myocardial infarction when nitroglycerin and methoxamine are administered during coronary occlusion. Circulation 49:291 (1974)PubMedGoogle Scholar
  65. 64.
    Myers, R.W., Scherer, J.L., Goldstein, R.A., et al.: Effects of nitroglycerin and nitro- glycerin-methoxamine during acute myocardial ischemia in dogs with pre-existing multivessel coronary occlusive disease. Circulation 51:632 (1975)PubMedGoogle Scholar
  66. 65.
    Borer, J.S., Redwood, D.R., Levitt, B., et al.: Reduction in myocardial ischemia with nitroglycerin plus phenylephrine administered during acute myocardial infarction. N. Engl. J. Med. 293:1008 (1975)PubMedGoogle Scholar
  67. 66.
    Epstein, S.E., Borer, J.S., Kent, K.M., et al.: Protection of ischemic myocardium by nitroglycerin: Experimental and clinical results. Circulation 53 (Suppl. I): 1–191 (1976)Google Scholar
  68. 67.
    Capurro, N.L., Kent, K.M., Smith, H.J., et al.: Acute coronary occlusion: Prolonged increase in collateral flow following brief administration of nitroglycerin and methoxamine. Am. J. Cardiol. 39:679 (1977)PubMedGoogle Scholar
  69. 68.
    Miller, R.R., Awan, N.A., DeMaria, A.N., et al.: Importance of maintaining systemic blood pressure during nitroglycerin administration for reducing ischemic injury in patients with coronary disease. Am. J. Cardiol. 40:504 (1977)PubMedGoogle Scholar
  70. 69.
    Chiariello, M., Lair, G.T., Ribeiro, L.G., et al.: “Reverse coronary steal” induced by coronary vasoconstriction following coronary artery occlusion in dogs. Circulation 56:809 (1977)PubMedGoogle Scholar
  71. 70.
    Jesmok, G.J., Gross, G.J., Hardman, H.F.: Effect of propranolol and nitroglycerin plus methoxamine on transmural creatine kinase activity after acute coronary occlusion. Am. J. Cardiol. 42:769 (1978)PubMedGoogle Scholar
  72. 71.
    Stockman, M.B., Verrier, R.L., Lown, B.: Effect of nitroglycerin on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion. Am. J. Cardiol. 43:233 (1979)PubMedGoogle Scholar
  73. 72.
    Allwood, M.J., Cobbold, A.F., Ginzburg, J.: Peripheral vascular effects of noradrenaline, isopropylnoradrenaline, and dopamine. Br. Med. Bull 19:132 (1963)PubMedGoogle Scholar
  74. 73.
    Dedichen, H., Schenk, W.G.: Hemodynamic effects of isoproterenol infusion. Arch. Surg. 97:934 (1968)PubMedGoogle Scholar
  75. 74.
    Lucchesi, B.R.: Inotropic agents and drugs used to support the failing heart. In: M. An- tonaccio (ed.): Cardiovascular pharmacology, p. 337. Raven Press, New York 1977Google Scholar
  76. 75.
    Lee, T.D., Roveti, G.C., Ross, R.S.: The hemodynamic effects of isoproterenol on pulmonary hypertension in man. Am. J. Cardiol. 65:361 (1963)Google Scholar
  77. 76.
    Alexander, R.S.: Contractile mechanics of venous smooth muscle. Am. J. Cardiol. 212:852 (1967)Google Scholar
  78. 77.
    Daoud, F.S., Reeves, J.T., Kelly, D.B.: Isoproterenol as a potential pulmonary vasodilator in primary pulmonary hypertension. Am. J. Cardiol. 42:817 (1978)PubMedGoogle Scholar
  79. 78.
    Elliot, W.C., Gorlin, R.: Isoproterenol in treatment of heart disease: Hemodynamic effects in circulatory failure. JAMA 197:93 (1966)Google Scholar
  80. 79.
    Loeb, H.S., Gunnar, R.M., Rahimtoola, S.H.: Pharmacologic agents in support of the circulation. In: R.M. Gunnar, H.S. Loeb, S.H. Rahimtoola (eds.): Shock in myocardial infarction, p. 131. Grune & Stratton, New York-San Francisco-London (1974)Google Scholar
  81. 80.
    Gunnar, R.M., Loeb, H.S.: Drugs in the treatment of shock. In: E. Donoso (ed.): Drugs in cardiology. Stratton Intercontinental Medical Book Corp., New York 1975Google Scholar
  82. 81.
    Shettigar, U.R., Hultgren, H.N., Specter, M., et al.: Primary pulmonary hypertension: Favorable effect of isoproterenol. N. Engl. J. Med. 295:1414 (1976)PubMedGoogle Scholar
  83. 82.
    Gunnar, R.M., Loeb, H.S., Pietras, R.J., et al.: Ineffectiveness of isoproterenol in shock due to acute myocardial infarction. JAMA 202:64 (1967)Google Scholar
  84. 83.
    Holloway, E.L., Stinson, E.B., Derby, G.C., et al.: Action of drugs in patients early after cardiac surgery. I. Comparison of isoproterenol and dopamine. Am. J. Cardiol. 35:656 (1975)PubMedGoogle Scholar
  85. 84.
    Maroko, P.R., Kjekshus, J.K., Sobel, B.E.: Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67 (1971)PubMedGoogle Scholar
  86. 85.
    Cohen, M.V., Sonnenblick, E.H., Kirk, E.S.: Coronary steal: Its role in detrimental effect of isoproterenol after acute coronary occlusion in dogs. Am. J. Cardiol. 38:880 (1976)PubMedGoogle Scholar
  87. 86.
    Mueller, H., Ayers, S.M., Gregory, J.J., et al.: Hemodynamics, coronary blood flow, and myocardial metabolism in coronary shock: response to 1-norepinephrine and isoproterenol. J. Clin. Invest. 49:1885 (1970)PubMedGoogle Scholar
  88. 87.
    Misra, S.N., Kezdi, P.: Hemodynamic effects of adrenergic stimulating and blocking agents in cardiogenic shock and low output state after myocardial infarction. Am. J. Cardiol. 31:724 (1973)PubMedGoogle Scholar
  89. 88.
    Sharma, G.V., Kumar, R., Molokhia, F., et al.: “Coronary steal”: Regional myocardial blood flow studies during isoproterenol infusion in acute and healing myocardial infarction. Clin. Res. 19:339 (1971)Google Scholar
  90. 89.
    Mason, D.T.: The cardiovascular effect of digitalis in normal man. Clin. Pharmacol. Ther. 7:1 (1966)PubMedGoogle Scholar
  91. 90.
    Smith, T.W.: Digitalis glycosides (parts 1 and 2). N. Engl. J. Med. 288:719, 942 (1973)PubMedGoogle Scholar
  92. 91.
    Smith, T.W., Haber, E.: Digitalis (parts 1 to 4). N. Engl. J. Med. 289:945, 1010, 1063, 1125 (1973)PubMedGoogle Scholar
  93. 92.
    Mason, D.T., Amsterdam, E.A.: Digitalis: Cardiovascular pharmacology and clinical application. In: C.P. Bailey (ed.): Advances in the management of clinical heart disease, Vol. 1, p. 365. Futura, New York 1976Google Scholar
  94. 93.
    Schwartz, A.: Is the cell membrane Na+, K+-ATPase enzyme system the pharmacological receptor for digitalis? Circ. Res. 39:2 (1976)Google Scholar
  95. 94.
    Hoffmann, B.F., Bigger, J.T.: Digitalis and allied cardiac glycosides. In: A. Goodman Gilman, L.S. Goodman, A. Gilman (eds.): The pharmacological basis of therapeutics, 6th edition, p. 729. Macmillan, New York-Toronto-London 1980Google Scholar
  96. 95.
    Langer, G.A.: The mechanism of action of digitalis. In: E. Braunwald (ed.): The myocardium: Failure and infarction, p. 135. H.P. Publishing Corp., New York 1974Google Scholar
  97. 96.
    Ferlinz, J., Del Vicario, M., Aronow, W.S.: Effects of rapid digitalization on total and regional myocardial performance in patients with coronary artery disease. Am. Heart J. 96:337 (1978)PubMedGoogle Scholar
  98. 97.
    Strickler, J.C., Kessler, R.H.: Direct renal actions of some digitalis steroids. J. Clin. Invest. 40:311 (1961)PubMedGoogle Scholar
  99. 98.
    Covell, J.W., Braunwald, E., Ross, J., et al.: Studies on digitalis. XVI. Effects on myocardial oxygen consumption. J. Clin. Invest. 45:1535 (1966)PubMedGoogle Scholar
  100. 99.
    Sonnenblick, E.H., Ross, J., Braunwald, E.: Oxygen consumption of the heart: Newer concepts of its multifactorial determination. Am. J. Cardiol. 22:328 (1968)PubMedGoogle Scholar
  101. 100.
    Lehmann, H.U., Witt, E., Hochrein, H.: Zunahme von Angina pectoris und ST-Strek- kensenkung im EKG durch Digitalis. Z. Kardiol. 67:57 (1978)PubMedGoogle Scholar
  102. 101.
    Ferlinz, J., Siegel, J., van Herick, R., et al.: Myocardial metabolism and threshold to angina in coronary artery disease after digitalization. Am. J. Med. 66:288 (1979)PubMedGoogle Scholar
  103. 102.
    Nelson, G.R., Sonnenblick, E.H., Kirk, E.S.: Mechanism of salutary effects of digitalis on myocardial ischemia with failure. Clin. Res. 23:382 (1975)Google Scholar
  104. 103.
    Glancy, D.L., Higgs, L.M., O’Brien, K.P., et al.: Effects of ouabain on the left ventricular response to exercise in patients with angina pectoris. Circulation 43:45 (1971)PubMedGoogle Scholar
  105. 104.
    Schüren, K.P., Kötter, V., Schröder, R.: Digitalis und koronare Herzkrankheit. Z. Kardiol. 69:319 (1980)PubMedGoogle Scholar
  106. 105.
    Forth, W., Henschler, D., Rummel, W.: Allgemeine und spezielle Pharmakologie und Toxikologie. B.I.-Wissenschaftsverlag, Mannheim-Wien-Zürich 1975Google Scholar
  107. 106.
    Peters, U.: Klinische und pharmakologische Grundlagen für eine kontrollierte Digitalistherapie. Z. Kardiol. 69:247 (1980)PubMedGoogle Scholar
  108. 107.
    Marcus, F.I.: Metabolie factors determining digitalis dosage in man. In: B.H. Marks, A.M. Weissler (eds.): Basic and clinical pharmacology of digitalis, p. 243. Charles C. Thomas, Springfield 1972Google Scholar
  109. 108.
    Seller, R.H.: The role of magnesium in digitalis toxicity. Am. Heart J. 82:511 (1971)Google Scholar
  110. 109.
    Ñola, G.T., Pope, S., Harrison, D.C.: Assessment of the synergistic relationship between serum calcium and digitalis. Am. Heart J. 79:499 (1970)PubMedGoogle Scholar
  111. 110.
    Doherty, J.E., Perkins, W.H.: Digoxin metabolism in hypo- and hyperthyroidism: Studies with tritiated digoxin in thyroid disease. Ann. Intern. Med. 64:489 (1966)PubMedGoogle Scholar
  112. 111.
    Ewy, G.A., Kapadia, G.G., Yao, L., et al.: Digoxin metabolism in the elderly. Circulation 39:449 (1969)PubMedGoogle Scholar
  113. 112.
    George, C.F.: Interactions with digoxin: More problems. Br. Med. J. 284:291 (1982)Google Scholar
  114. 113.
    Bliss, H.A., Fishman, W.E., Smith, P.M.: Effect of alterations of blood pH on digitalis toxicity. J. Lab. Clin. Med. 62:53 (1963)PubMedGoogle Scholar
  115. 114.
    Harrison, D.C., Robinson, M.D., Kleiger, R.E.: Role of hypoxia in digitalis toxicity. Am. J. Med. Sci. 256:352 (1968)PubMedGoogle Scholar
  116. 115.
    Schüren, K.P., Rietbrock, N.: Klinische Aspekte der Digitalisintoxikation. Internist. Praxis 17:581 (1977)Google Scholar
  117. 116.
    Kleiger, R., Lown, B.: Cardioversion and digitalis. II. Clinical studies. Circulation 33:878 (1966)PubMedGoogle Scholar
  118. 117.
    Juler, G.L., Stemmer, E.A., Connolly, J.E.: Complications of prophylactic digitaliza- tion in thoracic surgical patients. J. Thorac. Cardiovasc. Surg. 58:352 (1969)PubMedGoogle Scholar
  119. 118.
    Kassebaum, D.G., Griswold, H.E.: Digitalis in non-failing cardiac diseases. Progr. Cardiovasc. Dis. 12:454 (1970)Google Scholar
  120. 119.
    Selzer, A., Cohn, K.E.: Some thoughts concerning the prophylactic use of digitalis. Am. J. Cardiol. 26:214 (1970)PubMedGoogle Scholar
  121. 120.
    Coltart, D.J., Chamberlain, D.A., Howard, M.R., et al.: Effect of cardiopulmonary bypass on plasma digoxin concentrations. Br. Heart J. 33:334 (1971)PubMedGoogle Scholar
  122. 121.
    Schölmerich, P.: Die Glykosidintoxikation mit besonderer Berücksichtigung der Mineralstoffwechselstörungen. Regensburg. Jb. Ärztl. Fortbild. 12:357 (1965)Google Scholar
  123. 122.
    Fisch, C., Knoebel, S.B., Feigenbaum, H., et al.: Potassium and the monophasic action potential, electrocardiogram, conduction and arrhythmias. Progr. Cardiovasc. Dis. 8:387 (1966)Google Scholar
  124. 123.
    Ringer, S.: A further contribution regarding the influence of different constituents of blood on the contraction of the heart. J. Physiol. 4:29 (1883)PubMedGoogle Scholar
  125. 124.
    Peach, M.J.: Cations: Calcium, magnesium, barium, lithium and amonium. In: L.S. Goodman, A. Gilman (eds.): The pharmacological basis of therapeutics, 5th edition, p. 782. Macmillan, New York-Toronto-London 1975Google Scholar
  126. 125.
    Drop, L.J.: Interdependence between plasma ionized calcium and hemodynamic performance. Thesis, Katholieke Universiteit te Nijmwegen 1974Google Scholar
  127. 126.
    Drop, L.J., Fuchs, C., Stulz, P.M.: Determination of blood ionized calcium in a large segment of the normal adult population. Clin. Chim. Acta 89:503 (1978)PubMedGoogle Scholar
  128. 127.
    Drop, L.J., Laver, M.B.: Low plasma ionized calcium and response to calcium therapy in critically ill man. Anesthesiology 43:300 (1975)PubMedGoogle Scholar
  129. 128.
    Bristow, M.R., Schwartz, H.D., Binetti, G., et al.: Ionized calcium and the heart. Elucidation of in vivo concentration response relationships in the open chest dog. Circ. Res. 41:565 (1977)PubMedGoogle Scholar
  130. 129.
    Madsen, S., Olgaard, K.: Evaluation of a new automatic calcium ion analyzer. Clin. Chem. 23:690 (1977)PubMedGoogle Scholar
  131. 130.
    Pittinger, C., Chang, P.M., Faulkner, W.: Serum ionized calcium: Some factors influencing its level. South Med. J. 64:1211 (1971)PubMedGoogle Scholar
  132. 131.
    Robertson, W.G.: Measurement of ionized calcium in body fluids — a review. Ann. Clin. Biochem. 13:540 (1976)PubMedGoogle Scholar
  133. 132.
    Schaer, H.: Effects of ionized calcium on a correction of acidosis with alkalinizing agents. Br. J. Anaesth. 48:327 (1976)PubMedGoogle Scholar
  134. 133.
    Troughton, O., Singh, S.P.: Heart failure and neonatal hypocalcemia. Br. Med. J. 4:76 (1972)PubMedGoogle Scholar
  135. 134.
    Denlinger, J.K., Nahrwold, M.L., Gibbs, P.S., et al.: Hypocalcemia during rapid blood transfusion in anaesthetized man. Br. J. Anaesth. 48:995 (1976)PubMedGoogle Scholar
  136. 135.
    Stulz, P.M., Scheidegger, D., Drop, L.J., et al.: Ventricular pump performance during hypocalcemia. J. Thorac. Cardiovasc. Surg. 78:185 (1979)PubMedGoogle Scholar
  137. 136.
    Drop, L.J., Scheidegger, D.: Haemodynamic consequences of citrate infusion in the anaesthetized dog: Comparison between two citrate solutions and the influence of beta blockade. Br. J. Anesth. 51:513 (1979)Google Scholar
  138. 137.
    Scheidegger, D., Drop, L.J.: The relationship between duration of Q-T interval and plasma ionized calcium concentration: Experiments with acute, steady-state Ca+ + changes in the dog. Anesthesiology 51:143 (1979)PubMedGoogle Scholar
  139. 138.
    Denlinger, J.K., Nahrwold, M.L.: Cardiac failure associated with hypocalcemia. Anesth. Analg. 55:34 (1976)PubMedGoogle Scholar
  140. 139.
    Olinger, G.N., Hottenrott, D.G., Muller, D.G., et al.: Acute clinical hypocalcemic myocardial depression during rapid blood transfusion and postoperative hemodialysis. J. Thorac. Cardiovasc. Surg. 72:503 (1976)PubMedGoogle Scholar
  141. 140.
    Denlinger, J.K., Kaplan, J.A., Lecky, J.H., et al.: Cardiovascular responses to calcium administered intravenously to man during halothane anesthesia. Anesthesiology 42:390 (1975)PubMedGoogle Scholar
  142. 141.
    Lappas, D.G., Drop, L.J., Buckley, M.J., et al: Hemodynamic response to calcium chloride during coronary artery surgery. Surg. Forum 26:234 (1975)PubMedGoogle Scholar
  143. 142.
    Lappas, D.G., Verlee, T., Schneider, R., et al.: Effects of an acute increase in Ca+ + on pulmonary vasculature. Anesthesiology 51:S172 (1979)Google Scholar
  144. 143.
    Hempelmann, G., Piepenbrock, S., Frerk, C., et al.: Beeinflussung von Herz-Kreislauf- parametern durch Calcium-Glukonat und Calcium-Chlorid. Anaesthesist 27:516 (1978)PubMedGoogle Scholar
  145. 144.
    Drop, L.J., Scheidegger, D.: Plasma ionized calcium concentration: Important determinant of the hemodynamic response to calcium infusion. J. Thorac. Cardiovasc. Surg. 79:425 (1980)PubMedGoogle Scholar
  146. 145.
    Nola, G.T., Pope, S., Harrison, D.C.: Assessment of the synergistic relationship between serum calcium and digitalis. Am. Heart J. 79:499 (1970)PubMedGoogle Scholar
  147. 146.
    Farah, A., Tuttle, R.: Studies on the pharmacology of glucagon. J. Pharmacol. Exp. Ther. 129:49 (1960)PubMedGoogle Scholar
  148. 147.
    Parmley, W.W., Glick, G., Sonnenblick, E.H.: Cardiovascular effects of glucagon in man. N. Engl. J. Med. 279:12 (1968)PubMedGoogle Scholar
  149. 148.
    Glick, G., Parmley, W.W., Wechsler, A.S., et al.: Glucagon: Its enhancement of cardiac performance in cat and dog and persistance of its inotropic action despite beta receptor blockade with propranolol. Circ. Res. 22:789 (1968)PubMedGoogle Scholar
  150. 149.
    Smitherman, T.C., Osborn, R.C., Atkins, J.M.: Cardiac dose-response relationship for intravenously infused glucagon in normal intact dogs and men. Am. Heart J. 96:363 (1978)PubMedGoogle Scholar
  151. 150.
    Entman, M.L., Levey, G.S., Epstein, S.E.: Mechanism and action of epinephrine and glucagon on the canine heart: Evidence for increase in sarcotubular calcium stores mediated by 3’, 5’-AMP. Circ. Res. 25:429 (1969)PubMedGoogle Scholar
  152. 151.
    Afonso, S., Hansing, C.E., Ansfield, T.J., et al.: Enhancement of cardiovascular effects of glucagon by aminophylline. Cardiovasc. Res. 6:235 (1972)PubMedGoogle Scholar
  153. 152.
    Mayer, S.E., Namm, D.H., Rice, L.: Effect of glucagon on cyclic 35’-AMP, phos- phorylase activity, and contractility of heart muscle of the rat. Circ. Res. 26:225 (1970)PubMedGoogle Scholar
  154. 153.
    Prasad, K.: Glucagon-induced changes in the action potential, contraction, and Na+-K+-ATPase of cardiac muscle. Cardiovasc. Res. 9:355 (1975)PubMedGoogle Scholar
  155. 154.
    Whitehouse, F.W., James, T.N.: Chronotropic action of glucagon on the sinus node. Proc. Soc. Exp. Biol. 122:823 (1966)PubMedGoogle Scholar
  156. 155.
    Prasad, K., DeSousa, H.H.: Glucagon in the treatment of ouabain-induced cardiac arrhythmias in dogs. Cardiovasc. Res. 6:333 (1972)PubMedGoogle Scholar
  157. 156.
    Steiner, C., Witt, A.L., Damato, A.N.: Effect of glucagon on atrioventricular conduction and ventricular automaticity in dogs. Circ. Res. 24:167 (1969)PubMedGoogle Scholar
  158. 157.
    Lucchesi, B.R., Stutz, D.R., Winfield, R.A.: Glucagon: Its enhancement of atrioventricular nodal pacemaker activity and failure to increase ventricular automaticity in dogs. Circ. Res. 25:183 (1969)PubMedGoogle Scholar
  159. 158.
    Avenhaus, H., Bolte, H.D., Lüderitz, B.: Einfluß von Glucagon auf die Refraktärzeit des menschlichen Herzens. Verh. Dtsch. Ges. Inn. Med. 76:624 (1970)Google Scholar
  160. 159.
    Cohn, K.E., Agmon, J., Gamble, O.W.: The effect of glucagon on arrhythmias due to digitalis toxicity. Am. J. Cardiol. 25:683 (1970)PubMedGoogle Scholar
  161. 160.
    Lüderitz, B., Bolte, H.D., Avenhaus, H.: Einfluß von Glucagon auf das Aktionspoten- tial an Einzelfasern des Papillarmuskels. Verh. Dtsch. Ges. Inn. Med. 76:621 (1970)Google Scholar
  162. 161.
    Murtagh, J.G., Binnion, P.F., Lai, S., et al.: Hemodynamic effects of glucagon. Br. Heart J. 32:307 (1970)PubMedGoogle Scholar
  163. 162.
    Piepenbrock, S., Hempelmann, G., Helms, U., et al.: Therapie mit positiv inotrop wirkenden Substanzen unter besonderer Berücksichtigung von Glucagon und Dopamin. Anästh. Inform. 5:166 (1974)Google Scholar
  164. 163.
    Parmley, W.W., Manschester, J.H., Liedtke, A.J., et al.: Effects of glucagon on myocardial energetics. Circulation 39, 40 (Suppl. III): III-159 (1969)Google Scholar
  165. 164.
    Manchester, J.H., Parmley, W.W., Matloff, J.M., et al.: Effects of glucagon on myocardial oxygen consumption and coronary blood flow in man and in dog. Circulation 41:579 (1970)PubMedGoogle Scholar
  166. 165.
    Rowe, G.G.: Systemic and coronary hemodynamic effects of glucagon. Am. J. Cardiol. 25:670 (1970)PubMedGoogle Scholar
  167. 166.
    Tarnow, J., Gethmann, J.W., Patschke, D., et al.: Effects of glucagon on systemic circulation, coronary blood flow and myocardial oxygen consumption in the anesthetized dog. Drug Res. 25:1906 (1975)Google Scholar
  168. 167.
    Greenberg, B.T., Tsakiris, A.G., Moffitt, E.A., et al.: The hemodynamic and metabolic effects of glucagon in patients with chronic valvular disease. Proc. Mayo Clin. 45:132 (1970)PubMedGoogle Scholar
  169. 168.
    Swan, H.J., Forrester, J.S., Danzig, R., et al.: Power failure in acute myocardial infarction. Progr. Cardiovasc. Dis. 13:568 (1970)Google Scholar
  170. 169.
    Ratti, R., Rothlin, M., Senning, Ä.: Wirkung von Glucagon auf die Hämodynamik in der Frühphase nach Herzoperationen. Schweiz. Med. Wschr. 100:2171 (1970)PubMedGoogle Scholar
  171. 170.
    Goldschlager, N., Robin, E., Cowan, C.M., et al.: The effect of glucagon on the coronary circulation in man. Circulation 40:829 (1969)Google Scholar
  172. 171.
    Bourassa, M., Eibar, J., Campeau, L.: Effects of glucagon on myocardial metabolism in patients with and without coronary artery disease. Circulation 42:52 (1970)Google Scholar
  173. 172.
    Glick, G.: Glucagon. A perspective. Circulation 45:513 (1972)PubMedGoogle Scholar
  174. 173.
    Hurwitz, R.A.: Effect of glucagon on infants and children with atrioventricular heart block. Br. Heart J. 35:1260 (1973)PubMedGoogle Scholar
  175. 174.
    Farah, A.E., Alousi, A.A.: New cardiotonic agents: A search for a digitalis substitute. Life Sci. 22:1139 (1978)PubMedGoogle Scholar
  176. 175.
    Alousi, A.A., Farah, A.E., Lesher, G.Y., et al: Cardiotonic activity of amrinone (WIN 40680): 5-amino-3,4/-bipyridin-6(1 H)-one. Fed. Proc. 37:914 (1978)Google Scholar
  177. 176.
    deGuzman, N.T., Munoz, O., Palmer, R.F., et al.: A clinical evaluation of amrinone (A) - a new inotropic agent. Circulation 58 (Suppl. II): 11–183 (1978)Google Scholar
  178. 177.
    LeJemtel, T.H., Keung, E., Sonnenblick, E.H., et al.: Amrinone: A new non-glycoside, non-adrenergic cardiotonic agent effective in the treatment of intractable myocardial failure in man. Circulation 59:1098 (1979)PubMedGoogle Scholar
  179. 178.
    Benotti, J.R., Grossman, W., Braunwald, E., et al.: Hemodynamic assessment of amrinone. N. Engl. J. Med. 299:1373 (1978)PubMedGoogle Scholar
  180. 179.
    Benotti, J.R., Grossman, W., Braunwald, E., at al.: Effects of amrinone on myocardial energy metabolism and hemodynamics in patients with severe congestive heart failure due to coronary artery disease. Circulation 62:28 (1980)PubMedGoogle Scholar
  181. 180.
    Weiner, N.: Drugs that inhibit adrenergic nerves and block adrenergic receptors. In: A. Goodman Gilman, L.S. Goodman, A. Gilman (eds.): The pharmacological basis of therapeutics, 6th edition, p. 176. Macmillan, New York-Toronto-London 1980Google Scholar
  182. 181.
    Schüren, K.P., Palm, D.: Beta-Rezeptorenblocker. I. Klimsch-pharmakologische Aspekte. Berl. Ärztebl. 7:341 (1981)Google Scholar
  183. 182.
    Vujcovich, R.A., Foley, J.E., Brown, B., et al.: Effect of β-blockers on exercise double product (systolic blood pressure × heart rate). Br. J. Clin. Pharmacol. 7 (Suppl. 2): 167S (1979)Google Scholar
  184. 183.
    Taylor, S.H., Silke, B., Lee, P.S.: Intravenous beta-blockade in coronary heart disease. Is cardioselectivity or intrinsic sympathomimetic activity hemodynamically useful? N. Engl. J. Med. 306:631 (1982)PubMedGoogle Scholar
  185. 184.
    Parker, J.O., West, R.O., Digiorgi, S.: Hemodynamic effects of propranolol in coronary heart disease. Am. J. Cardiol. 21:11 (1968)PubMedGoogle Scholar
  186. 185.
    Wolfson, S., Gorlin, R.: Cardiovascular pharmacology of propranolol in man. Circulation 40:501 (1969)PubMedGoogle Scholar
  187. 186.
    Mueller, H.S., Ayres, S.M., Religa, A., et al.: Propranolol in the treatment of acute myocardial infarction. Effect on myocardial oxygenation and hemodynamics. Circulation 49:1078 (1974)PubMedGoogle Scholar
  188. 187.
    Pitt, B., Craven, P.: Effect of propranolol on regional myocardial blood flow in acute ischemia. Cardio vase. Res. 176 (1970)Google Scholar
  189. 188.
    Marshall, R.J., Parratt, J.R.: Comparative effects of propranolol and practolol in the early stages of experimental canine myocardial infarction. Br. J. Pharmacol. 57:295 (1976)PubMedGoogle Scholar
  190. 189.
    Warltier, D.C., Gross, G.J., Hardman, H.F.: Effect of propranolol on regional myocardial blood flow and oxygen consumption. J. Pharmacol. Exp. Ther. 198:435 (1976)PubMedGoogle Scholar
  191. 190.
    Rasmussen, M.M., Reimer, K.A., Kloner, R.A., et al.: Infarct size reduction by propranolol before and after coronary ligation in dogs. Circulation 56:794 (1977)PubMedGoogle Scholar
  192. 191.
    Buck, J.D., Gross, G.J., Warltier, D.C., et al.: Comparative effects of cardioselective versus noncardioselective beta blockade on subendocardial blood flow and contractile function in ischemic myocardium. Am. J. Cardiol. 44:657 (1979)PubMedGoogle Scholar
  193. 192.
    Buck, J.D., Hardman, H.F., Warltier, D.C., et al.: Changes in ischemic blood flow distribution and dynamic severity of a coronary stenosis induced by beta-blockade in the canine heart. Circulation 64:708 (1981)PubMedGoogle Scholar
  194. 193.
    Lewis, P.J., Haeusler, G.: Reduction in sympathetic nervous activity as a mechanism for hypotensive effect of propranolol. Nature, 256:440 (1975)PubMedGoogle Scholar
  195. 194.
    Frishman, W.H., Weksler, B., Christodoulou, J.P., et al.: Reversal of abnormal platelet aggregability and change in exercise tolerance in patients with angina pectoris following oral propranolol. Circulation 50:887 (1974)PubMedGoogle Scholar
  196. 194a.
    Mehta, J., Mehta, P.: Effects of propranolol therapy on platelet release and prostaglandin generation in patients with coronary artery disease. Circulation 66:1294 (1982)PubMedGoogle Scholar
  197. 195.
    Ponari, O., Civardi, E., Poti, R.: Action of some ß-blockers on plasma fibrinolysis in vitro and in vivo in man. Drug Res. 22:629 (1972)Google Scholar
  198. 196.
    Oski, F.A., Miller, L.D., Delivoria-Papadopoulos, M., et al.: Oxygen affinity in red cells: Changes induced in vivo by propranolol. Science 175:1372 (1972)PubMedGoogle Scholar
  199. 197.
    Schrumpf, J.D., Sheps, D.S., Wolfson, S., et al.: Altered hemoglobin-oxygen affinity with long-term propranolol therapy in patients with coronary artery disease. Am. J. Cardiol. 40:76 (1977)PubMedGoogle Scholar
  200. 198.
    Marchetti, G., Merlo, L., Noseda, V.: Myocardial uptake of free fatty acids in coronary blood flow after beta-adrenergic blockade. Am. J. Cardiol. 22:370 (1968)PubMedGoogle Scholar
  201. 199.
    Opie, L.H., Thomas, M.: Beta-blockade and myocardial infarction. Postgrad. Med. J. 52 (Suppl. 4): 124 (1976)PubMedGoogle Scholar
  202. 200.
    Simonsen, S., Kjekshus, J.K.: The effect of free fatty acids on myocardial oxygen consumption during atrial pacing and catecholamine infusion in man. Circulation 58:484 (1978)PubMedGoogle Scholar
  203. 201.
    Tarazi, R.C., Dustan, H.P.: Beta adrenergic blockade in hypertension. Am. J. Cardiol. 29:633 (1972)PubMedGoogle Scholar
  204. 202.
    Dixon, W.R., Mosiman, W.F., Weiner, N.: The role of presynaptic feedback mechanisms in regulation of norepinephrine release by nerve stimulation. J. Pharmacol. Exp. Ther. 209:196 (1979)PubMedGoogle Scholar
  205. 203.
    Bühler, F.R., Laragh, J.H., Baer, L., et al.: Propranolol inhibition of renin secretion. A specific approach to diagnosis and treatment of renin-dependent hypertensive diseases. N. Engl. J. Med. 287:1209 (1972)PubMedGoogle Scholar
  206. 204.
    Bühler, F.R., Burkart, F., Lütold, B., et al.: Antihypertensive betablocking action as related to renin and age: A pharmacologic tool to identify pathogenetic mechanisms in essential hypertension. Am. J. Cardiol. 36:653 (1975)PubMedGoogle Scholar
  207. 205.
    Zacharias, F.J., Cowen, K.J., Priest, J., et al.: Propranolol in hypertension. A study of long-term therapy, 1964 — 1970. Am. Heart J. 83:755 (1972)PubMedGoogle Scholar
  208. 206.
    Stokes, G.S., Weber, M.A., Thornell, I.R.: β-blockers and plasma renin activity in hypertension. Br. Med. J. 1:60 (1974)PubMedGoogle Scholar
  209. 207.
    Helfant, R.H., Herman, M.V., Gorlin, E.: Abnormalities of left ventricular contraction induced by beta adrenergic blockade. Circulation 43:641 (1971)PubMedGoogle Scholar
  210. 208.
    Crawford, M.H., Le Winter, L.M., O’Rourke, J.S., et al.: Combined propranolol and digoxin therapy in angina pectoris. Ann. Int. Med. 83:449 (1975)PubMedGoogle Scholar
  211. 209.
    Robertson, R.M., Wood, A.J., Vaughn, W.K., et al.: Exacerbation of vasotonic angina pectoris by propranolol. Circulation 65:281 (1982)PubMedGoogle Scholar
  212. 210.
    Kaltenbach, M., Schulz, W., Kober, G.: Effects of nifedipine after intravenous and in- tracoronary administration. Am. J. Cardiol. 44:832 (1979)PubMedGoogle Scholar
  213. 211.
    Bala Subramanian, V., Lahiri, A., Paramasivan, R., et al.: Verapamil in chronic stable angina. Lancet 2:841 (1980)Google Scholar
  214. 212.
    Antman, E., Muller, J., Goldberg, S., et al.: Nifedipine therapy for coronary artery spasm; experience in 127 patients. N. Engl. J. Med. 302:1269 (1980)PubMedGoogle Scholar
  215. 213.
    Hugenholtz, P.G., Michels, H.R., Serruys, P.W., et al.: Nifedipine in the treatment of unstable angina, coronary spasm and myocardial ischemia. Am. J. Cardiol. 47:163 (1981)PubMedGoogle Scholar
  216. 214.
    Gerstenblith, G., Ouyang, P., Achuff, S.C., et al.: Nifedipine in unstable angina. A double-blind, randomized trial. N. Engl. J. Med. 306:885 (1982)PubMedGoogle Scholar
  217. 215.
    Frishman, W.H., Klein, N.A., Strom, J.A., et al.: Superiority of verapamil to propranolol in stable angina pectoris: A double-blind, randomized crossover trial. Circulation 65 (Suppl. I): 1–51 (1982)Google Scholar
  218. 216.
    Waxman, H.L, Myerburg, R.J., Appel, R., et al.: Verapamil for control of ventricular rate in paroxysmal supraventricular tachycardia and atrial fibrillation or flutter. Ann. Int. Med. 94:(1981)Google Scholar
  219. 217.
    Singh, B.N., Ellrodt, G., Peter, C.T.: Verapamil: A review of its pharmacological properties and therapeutic use. Drugs 15:169 (1978)PubMedGoogle Scholar
  220. 218.
    Polese, A., Fiorentini, C.C., Olivari, M.T., et al.: Clinical use of a calcium antagonistic agent (nifedipine) in acute pulmonary edema. Am. J. Med. 66:825 (1979)PubMedGoogle Scholar
  221. 219.
    Fioretti, P., Benussi, B., Klugman, S., et al.: Benefical effects of nifedipine on regurgitation and left ventricular function in aortic insufficiency. Circulation 62 (Suppl. III): III-232 (1980)Google Scholar
  222. 220.
    Rosing, D.R., Kent, K.M., Maron, B.J., et al.: Verapamil therapy: A new approach to the pharmacologic treatment of hypertrophic cardiomyopathy. II. Effects on exercise capacity and symptomatic status. Circulation 60:1208 (1979)PubMedGoogle Scholar
  223. 221.
    Henry, P.D., Shuchleib, R., Davis, J., et al.: Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am. J. Physiol. 233:H677 (1977)PubMedGoogle Scholar
  224. 222.
    Nayler, W.G., Ferrari, R.J., Williams, A.M.: The protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am. J. Cardiol. 46:242 (1980)PubMedGoogle Scholar
  225. 223.
    Fleckenstein, A., Kammermeier, H., Döring, H., et al.: Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig sauerstoffeinsparenden Myokard-Ef- fekfen: Prenylamin und Iproveratril. Z. Kreisl.-Forsch. 56:716 (1967)Google Scholar
  226. 224.
    Henry, P.D.: Comparative pharmacology of calcium antagonists: Nifedipine, verapamil! and diltiazem. Am. J. Cardiol. 46:1047 (1980)PubMedGoogle Scholar
  227. 225.
    Rousseau, M.F., Veriter, C., Detry, J.R., et al.: Impaired early left ventricular relaxation in coronary artery disease: Effects of intracoronary nifedipine. Circulation 62:764 (1980)PubMedGoogle Scholar
  228. 226.
    Amende, I., Simon, R., Lichtlen, P.R.: Early effects of nifedipine on left ventricular diastolic function in man. Circulation 62 (Suppl. III): III-259 (1980)Google Scholar
  229. 227.
    Serruys, P.W., Brower, R.W., TenKaten, H.J., et al.: Regional wall motion from radiopaque markers after intravenous and intracoronary injections of nifedipine. Circulation 63:584 (1981)PubMedGoogle Scholar
  230. 228.
    Urquart, J., Patterson, R.E., Bacharach, S., et al.: Comparative effects of verapamil, diltiazem and nifedipine on hemodynamics and left ventricular function. Circulation (Suppl. IV): IV-230 (1981)Google Scholar
  231. 229.
    Walsh, R.A., Badke, F.R., O’Rourke, R.A.: Differential effects of systemic and intracoronary calcium channel blocking agents on global and regional left ventricular function in conscious dogs. Am. Heart J. 102:313 (1981)Google Scholar
  232. 230.
    Zsoter, T.T.: Appraisal and reappraisal of cardiac therapy: Calcium antagonists. Am. Heart J. 99:805 (1980)PubMedGoogle Scholar
  233. 231.
    Singh, B., Roche, A.: Effects of intravenous verapamil on hemodynamics in patients with heart disease. Am. Heart J. 94:592 (1977)Google Scholar
  234. 232.
    Lewis, B., Mitha, A., Gotsman, M.: Immediate hemodynamic effects of verapamil in man. Cardiology 60:366 (1976)Google Scholar
  235. 233.
    Ferlinz, J., Easthope, J.L., Aronow, W.S.: Effects of verapamil on myocardial performance in coronary disease. Circulation 59:313 (1979)PubMedGoogle Scholar
  236. 234.
    Ludbrook, P.A., Tiefenbrunn, A.J., Reed, F.R., et al.: Acute hemodynamic responses to sublingual nifedipine: Dependence on left ventricular function. Circulation 65:489 (1982)PubMedGoogle Scholar
  237. 235.
    Maseri, A., Mimmo, R., Chierchia, S., et al.: Coronary spasm as a cause of acute myocardial ischemia in man. Chest 68:625 (1975)Google Scholar
  238. 236.
    Maseri, A., Severi, S., De Nes, M., et al.: Variant angina: One aspect of a continuous spectrum of vasospastic myocardial ischemia: Pathogenetic mechanisms, estimated incidence and clinical and coronary arteriographic findings in 138 patients. Am. J. Cardiol. 42:1019 (1978)PubMedGoogle Scholar
  239. 237.
    Hillis, L.D., Braunwald, E.: Coronary-artery spasm. N. Engl. J. Med. 299:695 (1978)PubMedGoogle Scholar
  240. 238.
    Lichtlen, P.R., Engel, H.J., Wolf, R. et al.: The effect of the calcium-antagonistic drug nifedipine on coronary and left ventricular dynamics in patients with coronary artery disease. In: A. Fleckenstein, H. Roskamm (eds.): Calcium-Antagonismus, p. 270. Springer, Berlin-Heidelberg-New York 1980Google Scholar
  241. 239.
    Malacoff, R.F., Lorell, B.H., Mudge, G.H, et al.: Beneficial effects of nifedipine on regional myocardial blood flow in patients with coronary artery disease. Circulation (Suppl. I): 1–32 (1982)Google Scholar
  242. 240.
    Roberts, R., Jaffe, A.S., Henry, P.D., et al.: Nifedipine and acute myocardial infarction. Herz 6:90 (1981)PubMedGoogle Scholar
  243. 241.
    Ross, J.: Afterload mismatch and preload reserve: A conceptual framework for the analysis of ventricular function. Progr. Cardiovasc. Dis. 18:255 (1976)Google Scholar
  244. 242.
    Mason, D.T., Braunwald, E.: The effects of nitroglycerin and amyl nitrite on arteriolar and venous tone in the human forearm. Circulation 38:755 (1965)Google Scholar
  245. 243.
    Pitt, B.: Observations on the effect of myocardial reactive hyperemia, ischemia and nitroglycerin on regional myocardial blood flow. In: M. Kaltenbach, P. Lichtlen, G.C. Friesinger (eds.): Coronary heart disease, p. 8. Thieme, Stuttgart 1973Google Scholar
  246. 244.
    Miller, R.R., Vismara, L.A., Williams, D.O., et al: Pharmacologic mechanisms for left ventricular unloading in clinical congestive heart failure: Differential effects of nitro- prusside, phentolamine and nitroglycerin on cardiac function and peripheral circulation. Circ. Res. 39:127 (1976)PubMedGoogle Scholar
  247. 245.
    Flaherty, J.T., Come, P.C., Baird, M.G., et al.: Effects of intravenous nitroglycerin on left ventricular function and ST segment changes in acute myocardial infarction. Br. Heart J. 38:612 (1976)PubMedGoogle Scholar
  248. 246.
    Kotter, V., v. Leitner, E.R., Wunderlich, J., et al.: Comparison of haemodynamic effects of phentolamine, sodium nitroprusside, and glyceryl trinitrate in acute myocardial infarction. Br. Heart J. 39:1196 (1977)PubMedGoogle Scholar
  249. 247.
    Williams, J.F., Glick, G., Braunwald, E.: Studies on cardiac dimensions in intact un- anesthetized man: Effects of nitroglycerin. Circulation 38:767 (1967)Google Scholar
  250. 248.
    Mason, D.T., Zelis, R., Amsterdam, E.A.: Actions of the nitrates on the peripheral circulation and myocardial oxygen consumption: Significance in the relief of angina pectoris. Chest 59:296 (1971)PubMedGoogle Scholar
  251. 249.
    Burggraf, G.W., Parker, J.O.: Left ventricular volume changes after amyl nitrate and nitroglycerin in man as measured by ultrasound. Circulation 49:136 (1974)PubMedGoogle Scholar
  252. 250.
    Greenberg, H., Dwyer, E.M., Jameson, A.G., et al.: Effects of nitroglycerin on the major determinants of myocardial oxygen consumption. Am. J. Cardiol. 36:426 (1975)PubMedGoogle Scholar
  253. 251.
    Strauer, B.E., Scherpe, A.: Ventricular function and coronary hemodynamics after intravenous nitroglycerin in coronary artery disease. Am. Heart J. 95:210 (1978)PubMedGoogle Scholar
  254. 252.
    Wilhams, D.O., Amsterdam, E.A., Mason, D.T.: Hemodynamic effects of nitroglycerin in acute myocardial infarction. Decrease in ventricular preload at the expense of cardiac output. Circulation 51:421 (1975)Google Scholar
  255. 253.
    Bussmann, W.D., Schöfer, H., Kaltenbach, M.: Wirkung von Nitroglycerin beim akuten Myokardinfarkt. II. Intravenöse Dauerinfusion von Nitroglycerin bei Patienten mit und ohne Linksinsuffizienz und ihre Auswirkungen auf die Infarktgröße. Dtsch. Med. Wschr. 101:642 (1976)PubMedGoogle Scholar
  256. 254.
    Gold, H.K., Leinbach, R.C., Sanders, C.A.: Use of sublingual nitroglycerin in congestive failure following acute myocardial infarction. Circulation 46:839 (1972)PubMedGoogle Scholar
  257. 255.
    Strauer, B.E., Westberg, C., Tauchert, M.: Untersuchungen über inotrope Nitrogly- cerinwirkungen am isolierten Ventrikelmyokard. Eur. J. Physiol. 324:124 (1971)Google Scholar
  258. 256.
    Winbury, M.M., Howe, B.B., Weiss, H.R.: Effect of nitroglycerin and dipyridamole on epicardial and endocardial oxygen tension - further evidence for redistribution of myocardial flow. J. Pharmacol. Exp. Ther. 176:184 (1971)PubMedGoogle Scholar
  259. 257.
    Horwitz, L.D., Gorlin, R., Taylor, W.J., et al.: Effects of nitroglycerin on regional myocardial blood flow in coronary artery disease. J. Clin. Invest. 50:1578 (1971)PubMedGoogle Scholar
  260. 258.
    Ross, R.S.: Pathophysiology of coronary circulation. Br. Heart J. 33:173 (1971)PubMedGoogle Scholar
  261. 259.
    Kent, K.M., Smith, E.R., Redwood, D.R., et al.: Beneficial electrophysiologic effects of nitroglycerin during acute myocardial infarction. Am. J. Cardiol. 33:513 (1974)PubMedGoogle Scholar
  262. 260.
    Mehta, J., Pepine, C.J.: Effect of sublingual nitroglycerin on regional flow in patients with and without coronary disease. Circulation 58:803 (1978)PubMedGoogle Scholar
  263. 261.
    Winbury, M.M., Howe, B.B., Hefner, M.A.: Effects of nitrates and other coronary dilators on large and small coronary vessels: A hypothesis for the mechanism of action of nitrates. J. Pharmacol. Exp. Ther. 168:70 (1969)PubMedGoogle Scholar
  264. 262.
    Fam, W.M., McGregor, M.: Effect of nitroglycerin and dipyridamole on regional coronary resistance. Circ. Res. 22:649 (1968)PubMedGoogle Scholar
  265. 263.
    Maseri, A., Mimmo, R., Chierchia, S., et al.: Coronary artery spasm as a cause of acute myocardial ischemia in man. Chest 68:625 (1975)Google Scholar
  266. 264.
    Endo, M., Janda, I., Hosoda, S., et al.: Prinzmetal’s variant form of angina pectoris: Re-evaluation of mechanisms. Circulation 52:33 (1975)PubMedGoogle Scholar
  267. 265.
    Brown, B.G., Bolson, E., Petersen, R.B., et al.: The mechanisms of nitroglycerin action: Stenosis vasodilation as a major component of the drug response. Circulation 64:1089 (1981)PubMedGoogle Scholar
  268. 266.
    Franciosa, J.A., Guiha, N.H., Limas, C.J., et al.: Improved left ventricular function during nitroprusside infusion in acute myocardial infarction. Lancet 1:650 (1972)PubMedGoogle Scholar
  269. 267.
    Chatterjee, K., Parmley, W.W., Swan, H.J., et al.: Beneficial effects of vasodilator agents in severe mitral regurgitation due to dysfunction of subvalvular apparatus. Circulation 48:684 (1973)PubMedGoogle Scholar
  270. 268.
    Chatterjee, K., Parmley, W.W., Ganz, W., et al.: Hemodynamic and metabolic responses to vasodilator therapy in acute myocardial infarction. Circulation 48:1183 (1973)PubMedGoogle Scholar
  271. 269.
    Chatterjee, K., Swan, H.J., Kaushik, V.S., et al.: Effect of vasodilator therapy for severe pump failure in acute myocardial infarction on short-term and late prognosis. Circulation 53:797 (1976)PubMedGoogle Scholar
  272. 270.
    Goodman, D.J., Rossen, R.M., Holloway, E.L., et al.: Effect of nitroprusside on left ventricular dynamics in mitral regurgitation. Circulation 50:1025 (1974)PubMedGoogle Scholar
  273. 271.
    Uebis, R., Bleifeld, W., Mathey, D., et al.: Der Effekt von Natrium-Nitroprussid auf die Haemodynamik des linken Ventrikels beim frischen Infarkt. Z. Kardiol. 63 (Suppl. 1): 26 (1974)Google Scholar
  274. 272.
    Brown, D.R., Starek, P.: Sodium nitroprusside-induced improvement in cardiac function in association with left ventricular dilatation. Anesthesiology 41:521 (1974)PubMedGoogle Scholar
  275. 273.
    Stinson, E.B., Holloway, E.L., Derby, G., et al.: Comparative hemodynamic responses to chlorpromazine, nitroprusside, nitroglycerin and trimetaphan immediately after open-heart operations. Circulation 51/52 (Suppl. I): 1–26 (1975)Google Scholar
  276. 274.
    Armstrong, P.W., Walker, D.C., Burton, J.R., et al.: Vasodilator therapy in acute myocardial infarction. A comparison of sodium nitroprusside and nitroglycerin. Circulation 52:1118 (1975)PubMedGoogle Scholar
  277. 274a.
    Benzing, G., Helm worth, J. A., Schrieber, J.T., et al.: Nitroprusside after open heart surgery. Circulation 54:468 (1976)Google Scholar
  278. 275.
    Lappas, D.G., Lowenstein, E., Waller, J., et al.: Hemodynamic effects of nitroprusside infusion during coronary artery operation in man. Circulation 54 (Suppl. III): III-4 (1976)Google Scholar
  279. 276.
    Mikulic, E., Cohn, J.N., Franciosa, J.A.: Comparative hemodynamic effects of inotropic and vasodilator drugs in severe heart failure. Circulation 56:528 (1977)PubMedGoogle Scholar
  280. 277.
    Chatterjee, K., Parmley, W.W.: The role of vasodilator therapy in heart failure. Progr. Cardiovasc. Dis. 19 (301 (1977)Google Scholar
  281. 278.
    Meretoja, O.A., Laaksonen, V.O.: Hemodynamic effects of preload and sodium nitroprusside in patients subjected to coronary bypass surgery. Circulation 58:815 (1978)PubMedGoogle Scholar
  282. 279.
    Cohn, J.N., Franciosa, J.A.: Selection of vasodilator, inotropic or combined therapy for the management of heart failure. Am. J. Med. 65:181 (1978)PubMedGoogle Scholar
  283. 280.
    Mason, D.T.: Afterload reduction and cardiac performance. Physiologic basis of systemic vasodilators as a new approach in treatment of congestive heart failure. Am. J. Med. 65:106 (1978)PubMedGoogle Scholar
  284. 281.
    Stone, J.G., Hoar, P.F., Faltas, A.N., et al.: Comparison of intraoperative nitroprusside unloading in mitral and aortic regurgitation. J. Thorac. Cardiovasc. Surg. 78: 103 (1979)PubMedGoogle Scholar
  285. 282.
    Yoran, C., Yellin, E.L., Becker, R.M., et al.: Mechanism of reduction of mitral regurgitation with vasodilator therapy. Am. J. Cardiol. 43:773 (1979)PubMedGoogle Scholar
  286. 283.
    Franke, N., van Ackern, K., Peter, K., et al: Hämodynamische Wirkungen von Na- triumnitroprussid und Dopamin nach cardiochirurgischen Eingriffen. Anaesthesist 28:154 (1979)PubMedGoogle Scholar
  287. 284.
    Stone, J.G., Calabro, J.R., DePetrillo, M.A., et al.: Afterload reduction and preload augmentation. Anesthesiology 51:S66 (1979)Google Scholar
  288. 285.
    Miller, R.R., Awan, N.A., Joye, J.A., et al.: Combined dopamine and nitroprusside therapy in congestive heart failure. Circulation 55:881 (1977)PubMedGoogle Scholar
  289. 286.
    Stemple, D.R., Kleiman, J.H., Harrison, D.C.: Combined nitroprusside-dopamine therapy in severe chronic congestive heart failure. Am. J. Cardiol. 42:267 (1978)PubMedGoogle Scholar
  290. 287.
    Chiariello, M., Gold, H.K., Leinbach, R.C., et al.: Comparison between the effects of nitroprusside and nitroglycerin on ischemic injury during acute myocardial infarction. Circulation 54:767 (1976)Google Scholar
  291. 288.
    Gold, H.K., Chiariello, M., Leinbach, R.C., et al.: Deleterious effects of nitroprusside on ischemic injury during acute myocardial infarction. Herz 1:161 (1976)Google Scholar
  292. 289.
    Magnusson, P., Shell, W.E., Forrester, J.S., et al.: Increased creatine Phosphokinase release following blood pressure reduction in patients with acute infarction. Circulation 54 (Suppl. II): 11–28 (1976)Google Scholar
  293. 290.
    Mann, T., Cohn, P.F., Holman, B.L., et al.: Effect of nitroprusside on regional myocardial blood flow in coronary artery disease: Results in 25 patients and comparison with nitroglycerin. Circulation 57:732 (1978)PubMedGoogle Scholar
  294. 291.
    Kerber, R.E., Abboud, F.M.: Effect of alteration of arterial blood pressure and heart rate on segmental dyskinesis during acute myocardial ischemia and following coronary reperfusion. Circ. Res. 36:145 (1975)PubMedGoogle Scholar
  295. 292.
    daLuz, P.L., Forrester, J.S., Wyatt, H.L., et al.: Hemodynamic and metabolic effects of sodium nitroprusside on the performance and metabolism of regional ischemic myocardium. Circulation 52:400 (1975)Google Scholar
  296. 293.
    Mukherjee, D., Feldman, M.S., Helfant, R.H.: Nitroprusside therapy: Treatment of hypertensive patients with recurrent resting chest pain, ST-segment elevation, and ventricular arrhythmias. JAMA 235:2406 (1976)PubMedGoogle Scholar
  297. 294.
    Armstrong, P.W., Boroomand, K., Parker, J.D.: Nitroprusside in acute myocardial infarction: Correlative effects on hemodynamics and precordial mapping. Circulation 54 (Suppl. II): 11–76 (1976)Google Scholar
  298. 295.
    Awan, N.A., Miller, R.R., Vera, Z. et al.: Reduction of ST-segment elevation with infusion of nitroprusside in patients with acute myocardial infarction. Am. J. Cardiol. 38:435 (1976)PubMedGoogle Scholar
  299. 296.
    Miller, R.R., Awan, N.A., Kamiyama, T., et al.: Relations between systemic pressure, coronary blood flow, regional myocardial ischemia and energetics with impedance reduction by nitroprusside in experimental coronary stenosis. Circulation 56 (Suppl. II): 11–150 (1977)Google Scholar
  300. 297.
    Yeh, B.K., Gosselin, A.J., Swaye, P.S., et al.: Sodium nitroprusside as a coronary vasodilator in man: Effect of intracoronary sodium nitroprusside on coronary arteries, angina pectoris, and coronary blood flow. Am. Heart J. 93:610 (1977)PubMedGoogle Scholar
  301. 298.
    Capurro, N.L., Kent, K.M., Epstein, S.E.: Comparison of nitroglycerin-, nitroprusside- and phentolamine-induced changes in coronary collateral function in dogs. J. Clin. Invest. 60:295 (1977)PubMedGoogle Scholar
  302. 299.
    Cohn, J.N., Franciosa, J.A.: Vasodilator therapy of cardiac failure. II. N. Engl. J. Med. 297:254 (1977)PubMedGoogle Scholar
  303. 300.
    Parmley, W.W., Chatterjee, K.: Vasodilator therapy. Curr. Probl. Cardiol. 2:8 (1978)Google Scholar
  304. 301.
    Kerber, R.E., Martins, J.B., Marcus, M.K.: Effect of acute ischemia, nitroglycerin and nitroprusside on regional myocardial thickening, stress and perfusion. Circulation 60:121 (1979)PubMedGoogle Scholar
  305. 302.
    Taylor, S.H., Sutherland, G.R., McKenzie, M.B., et al.: The circulatory effects of intravenous phentolamine in man. Circulation 31:741 (1965)PubMedGoogle Scholar
  306. 303.
    Bagwell, E.E., Hilliard, C.C., Daniell, H.B., et al.: Studies on the inotropic mechanism of phentolamine. Am. J. Cardiol. 25:83 (1970)Google Scholar
  307. 304.
    Singh, J.B., Hood, W.B., Abelman, W.H.: Beta adrenergic mediated inotropic and chronotropic actions of phentolamine. Am. J. Cardiol. 26:660 (1970)Google Scholar
  308. 305.
    Hoffman, B.B., Lefkowitz, R.J.: Alpha-adrenergic receptor subtypes. N. Engl. J. Med. 302:1390 (1980)PubMedGoogle Scholar
  309. 306.
    Kelly, D.T., Delgado, C.E., Taylor, D.R.: Use of phentolamine in acute myocardial infarction associated with hypertension and left ventricular failure. Circulation 47:729 (1973)PubMedGoogle Scholar
  310. 307.
    Walinsky, P., Chatterjee, K., Forrester, J., et al.: Enhanced left ventricular performance with phentolamine in acute myocardial infarction. Am. J. Cardiol. 33:37 (1974)PubMedGoogle Scholar
  311. 308.
    Perret, C., Gardaz, J.P., Reynaert, M., et al.: Phentolamine for vasodilator therapy in left ventricular failure complicating acute myocardial infarction. Br. Heart J. 37:640 (1975)PubMedGoogle Scholar
  312. 309.
    Henning, R.J., Shubin, H., Weil, M.H.: Afterload reduction with phentolamine in patients with acute pulmonary edema. Am. J. Med. 63:568 (1977)PubMedGoogle Scholar
  313. 310.
    Gould, L., Zahir, M., Ettinger, S.: Phentolamine and cardiovascular performance. Br. Heart J. 31 154 (1969)PubMedGoogle Scholar
  314. 311.
    Bhatia, S.K., Fröhlich, E.D.: Hemodynamic comparison of agents useful in hypertensive emergencies. Am. Heart J. 85:367 (1973)Google Scholar
  315. 312.
    Mroczek, W.J., Lee, W.R., Davidov, M.E., et al.: Vasodilator administration in the presence of beta-adrenergic blockade. Circulation 53:985 (1976)PubMedGoogle Scholar
  316. 313.
    Hess, W., Tarnow, J., Patschke, D., et al.: Haemodynamik und Sauerstoffversorgung des Herzens bei kontrollierter Hypotension mit Natriumnitroprussid und Trimeta- phan. Anaesthesist 25:27 (1976)PubMedGoogle Scholar
  317. 314.
    Greenberg, B.H., DeMots, H., Murphy, E., et al.: Arterial dilators in mitral regurgitation: Effects on rest and exercise hemodynamics and long-term clinical follow-up. Circulation 65:181 (1982)PubMedGoogle Scholar
  318. 315.
    Lowenstein, J., Steele, J.: Prazosin. Am. Heart J. 95:262 (1978)PubMedGoogle Scholar
  319. 316.
    Cope, D.H., Crawford, M.C.: Labetalol in controlled hypotension. Br. J. Anaesth. 51:359 (1979)PubMedGoogle Scholar
  320. 317.
    McDonald, H.R., Baird, D.P., Stead, B.R., et al.: Clinical and circulatory effects of neuroleptanalgesia with dehydrobenzperidol and phenoperidine. Br. Heart J. 28:654 (1966)Google Scholar
  321. 318.
    Nechwatal, W., König, E., Greding, H., et al.: Die Wirkung von Furosemid auf Hämodynamik, Belastungs-EKG und Belastungstoleranz von Patienten mit Angina pectoris. Z. Kardiol. 67:116 (1978)PubMedGoogle Scholar
  322. 319.
    deBros, F., Daggett, W.M., Laver, M.B.: Effects of aminophylline on pulmonary vascular resistance. Anesthesiology 51:S128 (1979)Google Scholar
  323. 320.
    Curtiss, C., Vrobel, T., Franciosa, J.A., et al.: Hemodynamic effects of converting enzyme inhibitor in congestive heart failure. Am. J. Cardiol. 41:419 (1978)Google Scholar
  324. 321.
    Roberts, A.J., Niarchos, A.P., Subramanian, V.A., et al.: Hypertension following coronary artery bypass graft surgery. Comparison of hemodynamic responses to nitro- prusside, phentolamine, and converting enzyme inhibitor. Circulation 58 (Suppl. I): I- 43 (1978)Google Scholar
  325. 322.
    Davis, R., Ribner, H.S., Keung, E., et al.: Treatment of chronic congestive heart failure with Captopril, an oral inhibitor of angiotensin-converting enzyme. N. Engl. J. Med. 301:117 (1979)PubMedGoogle Scholar
  326. 323.
    Dzau, V.J., Colucci, W.S., Wilhams, G.H., et al.: Sustained effectiveness of converting- enzyme inhibition in patients with severe congestive heart failure. N. Engl. J. Med. 302:1373 (1980)PubMedGoogle Scholar
  327. 324.
    Faxon, D.P., Craeger, M.A., Halperin, J.L., et al.: Central and peripheral hemodynamic effects of angiotensin inhibition in patients with refractory congestive heart failure. Circulation 61:925 (1980)PubMedGoogle Scholar
  328. 325.
    Ader, R., Chatterjee, K., Ports, T., et al.: Immediate and sustained hemodynamic and clinical improvement in chronic heart failure by an oral angiotensin-converting enzyme inhibitor. Circulation 61:931 (1980)PubMedGoogle Scholar
  329. 326.
    Zelis, R., Longhurst, J., Capone, R.J., et al.: Peripheral circulatory control mechanism in congestive heart failure. In: D.T. Mason (ed.): Congestive heart failure: Mechanisms, evaluation and treatment, p. 129. Yorke Medical Books, New York 1976Google Scholar
  330. 327.
    Lappas, D.G., Fahmy, N.R., Ohtaka, M., et al.: Interaction of renin-angiotensin-catecholamines in cardiac surgical patients. Anesthesiology 51:S98 (1979)Google Scholar
  331. 328.
    Tinker, J.H., Michenfelder, J.D.: Sodium nitroprusside: Pharmacology, toxicology and therapeutics. Anesthesiology 45:340 (1976)PubMedGoogle Scholar
  332. 329.
    Vesey, C.J., Cole, V., Simpson, P.J.: Cyanide and thiocynate concentrations following sodium nitroprusside infusion in man. Br. J. Anaesth. 48:651 (1976)PubMedGoogle Scholar
  333. 330.
    Geller, E.A., Moore, R.A., Forsythe, M., et al.: Cyanide release by nitroprusside during hypothermic CPB. Anesthesiology 55:A20 (1981)Google Scholar
  334. 331.
    Bedford, R.F., Berry, F.A., Longnecker, D.E.: Impact of propranolol on hemodynamic responses and blood cyanide levels during nitroprusside infusion: A prospective study in anesthetized man. Anesth. Analg. 58:466 (1979)PubMedGoogle Scholar
  335. 332.
    Davies, D.W., Kadar, D., Steward, D.J., et al.: A sudden death associated with the use of sodium nitroprusside for induction of hypotension during anaesthesia. Canad. Anaesth. Soc. J. 22:547 (1975)PubMedGoogle Scholar
  336. 333.
    Cottrell, J.E., Casthely, P., Brodie, J.D., et al: Prevention of nitroprusside-induced cyanide toxicity with hydroxocobalamin. N. Engl. J. Med. 298:809 (1978)PubMedGoogle Scholar
  337. 334.
    Wildsmith, J.A., Drummond, G.B., Maae, W.R.: Blood-gas changes during induced hypotension with sodium nitroprusside. Br. J. Anaesth. 47:1205 (1975)PubMedGoogle Scholar
  338. 335.
    Seltzer, J.L., Doto, J.D., Jacoby, J.: Decreased arterial oxygenation during sodium nitroprusside administration for intraoperative hypertension. Anesth. Analg. 55:880 (1976)PubMedGoogle Scholar
  339. 336.
    Colley, P.S., Cheney, F.W.: Sodium nitroprusside increases Qs/QT in dogs with regional atelectasis. Anesthesiology 47:338 (1977)PubMedGoogle Scholar
  340. 336a.
    Anjou-Lindskog, E., Broman, L., Holmgren, A.: Effects of nitroglycerin on central haemodynamics and VA/Q distribution early after coronary bypass surgery. Acta Anaesth. Scand. 26:489 (1982)PubMedGoogle Scholar
  341. 337.
    Packer, M., Melier, J., Medina, N., et al.: Rebound hemodynamic events after the abrupt withdrawal of nitroprusside in patients with severe chronic heart failure. N. Engl. J. Med. 301:1193 (1979)PubMedGoogle Scholar
  342. 338.
    Khambatta, H.J., Stone, J.G., Khan, E.: Hypertension during anesthesia on discontinuation of sodium nitroprusside-induced hypotension. Anesthesiology 51:127 (1979)PubMedGoogle Scholar
  343. 339.
    Khambatta, H.J., Stone, J.G., Khan, E.: Propranolol abates nitroprusside-induced renin release. Anesthesiology 51:S74 (1979)Google Scholar
  344. 340.
    Fibuch, E.E., Cecil, W.T., Reed, W.A.: Methemoglobinemia associated with organic nitrate therapy. Anesth. Analg. 58:521 (1979)PubMedGoogle Scholar
  345. 341.
    Dobbs, W., Povalski, H.J.: Coronary circulation, angina pectoris, and antianginal agents. In: M.J. Antonaccio (ed.): Cardiovascular pharmacology, p. 461. Raven Press, New York 1977Google Scholar
  346. 342.
    Oesterle, S.N., Schroeder, J.S.: Calcium-entry blockade and the reflex control of circulation. Circulation 65:669 (1982)PubMedGoogle Scholar
  347. 343.
    Packer, M., Melier, J., Medina, N., et al.: Hemodynamic consequences of combined beta-adrenergic and slow calcium channel blockade in man. Circulation 65:660 (1982)PubMedGoogle Scholar
  348. 344.
    Kieval, J., Kirsten, E.B., Kessler, K.M., et al.: The effects of intravenous verapamil on hemodynamic status of patients with coronary artery disease receiving propranolol. Circulation 65:653 (1982)PubMedGoogle Scholar
  349. 345.
    Lappas, D.G., Ohtaka, M., Fahmy, N.R., et al.: Systemic and pulmonary effects of nitroprusside during mitral valve replacement in patients with mitral regurgitation. Circulation 58 (Suppl. I): 1–18 (1978)Google Scholar
  350. 346.
    Stone, J.G., Hoar, P.F., Faltas, A.N., et al.: Nitroprusside and mitral stenosis. Anesth. Analg. 59:626 (1980)Google Scholar
  351. 347.
    Miller, R.R., Vismara, L.A., daria, A.N., et al.: Afterload reduction therapy by nitroprusside in severe aortic regurgitation: Improved cardiac performance and reduced regurgitant volume. Am. J. Cardiol. 38:564 (1976)PubMedGoogle Scholar
  352. 348.
    Bolen, J.L., Alderman, E.L.: Hemodynamic consequences of afterload reduction in patients with chronic aortic regurgitation. Circulation 53:879 (1976)PubMedGoogle Scholar
  353. 349.
    Synhorst, D.P., Lauer, R.M., Doty, D., et al.: Hemodynamic effects of vasodilator agents in dogs with experimental ventricular septal defects. Circulation 54:472 (1976)PubMedGoogle Scholar
  354. 350.
    Mann, R., Maurin, L., Grossman, W., et al.: Assessing the hemodynamic severitity of acute aortic regurgitation due to infective endocarditis. N. Engl. J. Med. 293:108 (1975)PubMedGoogle Scholar
  355. 351.
    Pepine, C.J., Nichols, W.W., Curry, R.C., et al: Reversal of premature mitral valve closure by nitroprusside infusion in severe aortic insufficiency: Beat to beat pressure-flow and echocardiography relationships. Am. J. Cardiol. 37:161 (1976)Google Scholar
  356. 352.
    Awan, N.A., Miller, R.R., daria, A.N., et al.: Vasodilator therapy in valvular aortic stenosis: Improved cardiac performance, reduced left ventricular pressure overload and preservation of coronary blood flow. Circulation 56 (Suppl. III): 111–38 (1977)Google Scholar
  357. 353.
    Kirsh, M.M., Bove, E., Detmer, M. et al.: The use of levarterenol and phentolamine in patients with low cardiac output following open-heart surgery. Ann. Thorac. Surg. 29:26 (1980)PubMedGoogle Scholar
  358. 354.
    Schröder, R., Schüren, K.P., Biamino, G., et al.: Positiv-inotrope Herzwirkung von Aldadien-Kalium (Aldactone pro injectione). Klin. Wschr. 49:1093 (1971)PubMedGoogle Scholar
  359. 355.
    Schröder, R., Ramdohr, B., Hüttemann, U., et al.: Direkte positiv-inotrope Herzwir- kung von Aldactone (Spironolacton, Canrenoat-Kalium). Dtsch. Med. Wschr. 97:1535 (1972)PubMedGoogle Scholar
  360. 356.
    Hüttemann, U., Schüren, K.P.: Zur Behandlung des chronischen cor pulmonale mit Aldactone. Dtsch. Med. Wschr. 97:1533 (1972)PubMedGoogle Scholar
  361. 357.
    Klein, W., Pavek, P., Brandt, D., et al.: Hämodynamische Wirkung von Spironolactone beim akuten Myokardinfarkt. Intensivmed. 12:85 (1975)Google Scholar
  362. 358.
    Ramdohr, B., Schüren, K.P., Schröder, R.: Die Behandlung der Herzinsuffizienz mit Spironolacton und Canrenoat-Kalium. Therapiewoche 35:4598 (1975)Google Scholar
  363. 359.
    Bachour, G., Bender, F., Most, E.: Hämodynamische Wirkungen von Aldosteronantagonisten bei Patienten mit Mitralstenose. Z. Kardiol. 67:469 (1978)PubMedGoogle Scholar
  364. 360.
    Waldorff, S., Buch, J.: Canrenoate - a spironolactone metabolite. Acute cardiac effects in digitalized patients. Eur. J. Cardiol. 10:143 (1979)PubMedGoogle Scholar
  365. 361.
    Seleye, H., Krajny, M., Savoie, L.: Digitoxin poisoning: Prevention by spironolactone. Science 164:842 (1969)Google Scholar
  366. 362.
    Yeh, B.K., Chiang, B.N., Sung, P.K.: Antiarrhythmic activity of potassium can- renoate in man. Am. Heart J. 92:308 (1976)PubMedGoogle Scholar
  367. 363.
    Lai, S., Murtagh, J.G., Pollock, A.M., et al.: Acute haemodynamic effects of furosemide in patients with normal and raised left atrial pressures. Br. Heart J. 31:711 (1969)Google Scholar
  368. 364.
    Mond, H., Hunt, D., Sloman, G.: Hemodynamic effect of furosemide in patients suspected of having acute myocardial infarction. Br. Heart J. 36:44 (1974)PubMedGoogle Scholar
  369. 365.
    Tattersfield, A.E., Micol, M.W., Sillett, R.W.: Hemodynamic effects of intravenous furosemide in patients with myocardial infarction and left ventricular failure. Clin. Sci. Molec. Med. 46:253 (1974)Google Scholar
  370. 366.
    Schenk, K.E., Biamino, G., Schröder, R.: Vergleichende hämodynamische Untersuchungen über die extrarenale Wirkung von Furosemid und Ethacrynsäure. Klin. Wschr. 53:1133 (1975)PubMedGoogle Scholar
  371. 367.
    Biagi, R.W., Bapat, B.N.: Furosemide in acute pulmonary oedema. Lancet 1:849 (1967)PubMedGoogle Scholar
  372. 368.
    Kiely, J., Kelly, D.T., Taylor, D.R., et al.: The role of furosemide in the treatment of left ventricular dysfunction associated with acute myocardial infarction. Circulation 48:581 (1973)PubMedGoogle Scholar
  373. 369.
    Piepenbrock, S., Hempelmann, G., Gaudszuhn, B., et al.: Zur kardialen und vaskulären Wirkung von Furosemid. Dtsch. Med. Wschr. 102:1661 (1977)PubMedGoogle Scholar
  374. 370.
    Dikshit, K., Vyden, J.K., Forrester, J.S., et al.: Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N. Engl. J. Med. 288:1087 (1973)PubMedGoogle Scholar
  375. 371.
    Bhaitia, M.P., Sing, I., Manchanda, S.C.: Effect of furosemide on pulmonary blood volume. Br. Heart J. 31:551 (1969)Google Scholar
  376. 372.
    Dudel, J.: Erregung von Nerv und Muskel. In: R.F. Schmidt, G. Thews (Hrsg.): Physiologie des Menschen, S. 7. Springer, Berlin-Heidelberg-New York 1977Google Scholar
  377. 373.
    Antoni, H.: Funktion des Herzens. In: R.F. Schmidt, G. Thews (Hrsg.): Physiologie des Menschen, S. 346. Springer, Berlin-Heidelberg-New York 1977Google Scholar
  378. 374.
    Lucchesi, B.R.: Antiarrhythmic drugs. In: M.J. Antonaccio (ed.): Cardiovascular pharmacology, p. 269. Raven Press, New York 1977Google Scholar
  379. 375.
    Katz, A.M.: Physiology of the heart, p. 229. Raven Press, New York 1977Google Scholar
  380. 376.
    Katz, A.M., Messineo, F.C., Herbette, L.: Ion channels in membranes. Circulation 65 (Suppl. I): 1–2 (1982)Google Scholar
  381. 377.
    Coraboeuf, E.: Ionic basis of electrical activity in cardiac tissues. Am. J. Physiol. 234:H101 (1978)PubMedGoogle Scholar
  382. 378.
    Hille, B., Schwarz, W.: Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:409 (1978)PubMedGoogle Scholar
  383. 379.
    Trautwein, W.: Physiologie des Menschen, Bd. 3, Herz und Kreislauf. Urban u. Schwarzenberg, München 1972Google Scholar
  384. 380.
    Hoffman, B.F.: The genesis of cardiac arrhythmias. Progr. Cardiovasc. Dis. 8:319 (1966)Google Scholar
  385. 381.
    Ten-Eick, R.E., Singer, D.H.: Human cardiac arrhythmia: Mechanism and models. In: J. Han (ed.): Cardiac arrhythmias, a symposium, p. 3. Charles C. Thomas, Springfield 1972Google Scholar
  386. 382.
    Bigger, J.T.: Electrical properties of cardiac muscle and possible causes of cardiac arrhythmias. In: L.S. Dreifus, W. Lokoff (eds.): Cardiac arrhythmias, Hahnemann Symposiums, Vol. 25, p. 11. Grune & Stratton, New York-San Francisco-London 1973Google Scholar
  387. 383.
    Han, J., Moe, G.K.: Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14:44 (1964)PubMedGoogle Scholar
  388. 384.
    Theisen, K., Jahrmärker, H.: Re-entry Mechanismus ventrikulärer Tachykardien bei inhomogener Repolarisation. Unter besonderer Berücksichtugung des Jervell- und Lange-Nielsen-Syndroms sowie ähnlicher Zustände und ihrer Therapie. Dtsch. Med. Wschr. 100:1141 (1975)PubMedGoogle Scholar
  389. 385.
    Avenhaus, H.: Rhythmusstörungen des Herzens. In: G. Riecker (Hrsg.): Klinische Kardiologie, S. 223. Springer, Berlin-Heidelberg-New York 1975Google Scholar
  390. 386.
    Ochs, H.R., Greenblatt, D.J., Bodem, G.: Clinical pharmacokinetics of some antiarrhythmic drugs. Herz 4:330 (1979)PubMedGoogle Scholar
  391. 387.
    Ferlinz, J., Easthope, J.L., Aronow, W.S.: Effects of verapamil on myocardial performance in coronary disease. Circulation 59:313 (1979)PubMedGoogle Scholar
  392. 388.
    Klinke, W.P., Christie, L.G., Nichols, W.W., et al.: Use of catheter-tip velocity-pressure transducer to evaluate left ventricular function in man: Effects of intravenous propranolol. Circulation 61:946 (1980)PubMedGoogle Scholar
  393. 389.
    Jahrmärker, H., Theisen, K.: Differentialtherapie von Herzrhythmusstörungen. Internist 19:241 (1978)PubMedGoogle Scholar
  394. 390.
    Lüderitz, B.: Diffentialtherapie tachykarder Rhythmusstörungen. Herz 3:62 (1978)PubMedGoogle Scholar
  395. 391.
    Petri, H., Rudolph, W.: Medikamentöse Therapie tachykarder Rhythmusstörungen. Herz 4:344 (1979)PubMedGoogle Scholar
  396. 392.
    Schröder, R., Südhof, H.: Praktische EKG-Auswertung. Schattauer, Stuttgart-New York 1971Google Scholar
  397. 393.
    Kates, R.A., Zaidan, J.R., Kaplan, J.A.: New ECG monitoring techniques during anesthesia. Anesthesiology 55, A33 (1981)Google Scholar
  398. 394.
    Friesen, W.G., Woodson, R.D., Ames, A.W., et al.: A hemodynamic comparison of atrial and ventricular pacing in postoperative cardiac surgical patients. J. Thorac. Cardiovasc. Surg. 55:271 (1968)PubMedGoogle Scholar
  399. 395.
    Rost, W., Gattenhohner, W., Schneider, K.W., et al.: Investigation of the hemodynamic effect of ventricular, atrial and bifocal stimulation. Intensivmedizin 11:72 (1973)Google Scholar
  400. 396.
    Curtis, J.J., Maloney, J.D., Barnhorst, D.A., at al.: A critical look at temporary ventricular pacing following cardiac surgery. Surgery 82:888 (1977)PubMedGoogle Scholar
  401. 397.
    Wynands, J.E.: Pacemakers during open heart surgery. In: G.C. Hoffman (ed.): Anesthesia and the heart patient. Cleveland Clinic Quarterly, Vol. 48, p. 193. Waverly Press, Baltimore 1981Google Scholar
  402. 398.
    Ogawa, S., Dreifus, L.S., Shenoy, P.N., et al.: Hemodynamic consequences of atrioventricular and ventriculoatrial pacing. Pace 1:8 (1978)PubMedGoogle Scholar
  403. 399.
    Zaidan, J.R.: Pacemakers. In: J.A. Kaplan (ed.): Cardiac anesthesia, p. 347. Grune & Stratton, New York-San Francisco-London 1979Google Scholar
  404. 400.
    Escher, D.J., Furman, S.: Emergency treatment of cardiac arrhythmias: Emphasis on use of electrical pacing. JAMA 214:2028 (1970)PubMedGoogle Scholar
  405. 401.
    Lurie, A.J., Salel, A.F., Vera, Z., et al.: Rapid overdrive pacing for refractory tachyarrhythmias in patients after open heart surgery. J. Thorac. Cardiovasc. Surg. 72:458 (1976)PubMedGoogle Scholar
  406. 402.
    Waldo, A.L., Mean, W.A., Karp, R.B., et al.: Entrainment and interruption of atrial flutter with atrial pacing: Studies in man following open heart surgery. Circulation 56:737 (1977)PubMedGoogle Scholar
  407. 403.
    Lüderitz, B., Steinbeck G., Guize, L., et al.: Schrittmachertherapie tachykarder Rhythmusstörungen durch frequenzbezogene Intervallstimulation. Dtsch. Med. Wschr. 100:730 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1983

Authors and Affiliations

  • Jörg Tarnow
    • 1
  1. 1.Institut für Anaesthesiologie im Klinikum CharlottenburgFreien Universität BerlinDeutschland

Personalised recommendations