Contrast of Structured and Homogenous Representations

  • G. H. Granlund
  • H. Knutsson
Part of the Springer Series in Information Sciences book series (SSINF, volume 11)


A large part of the information that we want to process is of structural or spatial nature. This means that the information is provided partly by data points in a space and partly by the structural relationships between these data points. As examples of such information we can mention speech, image information, complex decision problems and in general what is included in the field of Artificial Intelligence [1].


Image Enhancement Class Membership Vicious Circle Computing Structure Finger Print Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Winston: Artificial Intelligence. (Addison-Wesley Publishing Company, 1977 ).MATHGoogle Scholar
  2. 2.
    J. B. Dennis, G. A. Boughton, K. C. Leung, Proceedings of 7th Ann. Symp. Computer Architecture, pp. 1–8.Google Scholar
  3. 3.
    J. H. Allman, J. Kaas, Brain Res. 35, 89–106, (1971).CrossRefGoogle Scholar
  4. 4.
    D. H. Hubel, T. N. Wiesel, J. Physiol. 160, 106–154, (1962).Google Scholar
  5. 5.
    D. N. Hubel, T. N. Wiesel, M. P. Stryer, J. Comp. Neurol. 177, 361–380, (1978).CrossRefGoogle Scholar
  6. 6.
    D. H. Hubel, T. N. Wiesel: J. Comp. Neurol. 158, 295–302, (1974).CrossRefGoogle Scholar
  7. 7.
    D. Marr, A. I. Memo No. 340, Massachusetts Institute of Technology, (1975).Google Scholar
  8. 8.
    D. M. Mackay: Perception and Brain Function, Second Neuroscience study Program, (M.I.T. Press, Cambridge, Mass. 1970 ), pp 303–315.Google Scholar
  9. 9.
    J. I. Allman, J. H. Kaas, Brain Research, 76, 247–265 (1974).CrossRefGoogle Scholar
  10. 10.
    S. M Zeki, J. Physiol. 217, 273–290 (1978).Google Scholar
  11. 11.
    S. Tanimoto, T. Pavlidis, Comput. Graph. Image Proc. 4, 104–119, (1975).CrossRefGoogle Scholar
  12. 12.
    A. Rosenfeld, Proceedings of 5th Int. Joint Conf. on Pattern Recognition, Miami, USA, (1980), pp. 802–811.Google Scholar
  13. 13.
    H. Marko: Biomedical Pattern Recognition and Image Processing, ( Verlag Chemie GmbH, Weinheim 1979 ) pp. 269–296.Google Scholar
  14. 14.
    G. H. Grani und, Comp. Graph, and Image Proc. 2, 154–173, (1978).Google Scholar
  15. 15.
    G. H. Granlund, H. Knutsson, Proceedings of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Paris, (1982), pp. 11–16.Google Scholar
  16. 16.
    H. Knutsson, G. H. Granlund, Proceedings of the 5th International Conf. on Pattern Recognition, Miami, Florida, (1980), pp. 45–48.Google Scholar
  17. 17.
    L. A. Zadeh, Information and Control, No. 3, Vol. 8, 338–353, (1965).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    H. Knutsson, R. Wilson, G. H. Granlund, IEEE Trans, on Communications, In Press (1983).Google Scholar
  19. 19.
    R. Wilson, H. Knutsson, G. H. Granlund, IEEE Trans, on Communications, In press (1983).Google Scholar
  20. 20.
    M. Hedlund, Proc. IEEE CompSoc Conf. on Pattern Recognition and Image Processing, Las Vegas (1982) pp. 93–96.Google Scholar
  21. 21.
    A. Rosenfeld, R. A. Hummer, S. W. Zucker, IEEE Trans, on Systems, Man and Cybernetics, No. 6, Vol. SMC-6, 420–433, (1976).CrossRefGoogle Scholar
  22. 22.
    P. Brodatz: Textures ( Dover, New York (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • G. H. Granlund
    • 1
  • H. Knutsson
    • 1
  1. 1.Picture Processing LaboratoryLinkoeping UniversityLinkoepingSweden

Personalised recommendations