Skip to main content

Viewer-Centered Intensity Computations

  • Conference paper
Physical and Biological Processing of Images

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 11))

  • 203 Accesses

Abstract

Computational vision is the study of computational systems that interpret images. That is, it is the study of systems that produce symbolic descriptions of a world from images of that world. A scene domain consists of objects whose visible surfaces are defined in three spatial dimensions. An imaging device projects rays of light onto a plane. The image domain consists of a spatially varying brightness function (image irradiance) defined over a bounded planar region. The problem is to reconstruct a three-dimensional representation of the scene from its two-dimensional projection onto the image plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marr, D., Vision, W. H. Freeman, 1982.

    Google Scholar 

  2. Barrow, H. G. & J. M. Tenenbaum, Recovering intrinsic scene characteristics from images, in Computer Vision Systems, A. R. Hanson & E. M. Riseman (eds.), pp. 3–26, Academic Press, 1978.

    Google Scholar 

  3. Horn, B. K. P., Sequins and quills — representations for surface topography, in Representation of 3-Dimensional Objects, R. Bajcsy (ed.), Springer-Verlag, (in press).

    Google Scholar 

  4. Horn, B. K. P., Understanding Image Intensities, Artificial Intelligence (8)201–231, (1977).

    Article  MATH  Google Scholar 

  5. Minnaert, M., Photometry of the moon, in The Solar System Vol. III: Planets and Satellites, G. P. Kuiper & B. M. Middlehurst (eds.), pp. 213–248, Univ. Chicago Press, 1961.

    Google Scholar 

  6. Hapke, B., Optical properties of the lunar surface, in Physics and Astronomy of the Moon (2nd edition), Z. Kopal (ed.) pp. 155–211, Academic Press, 1971.

    Google Scholar 

  7. Van Diggelen, J., A photometric investigation of the slopes and the heights of the ranges of hills in the maria of the moon, Bulletin of the Astronomical Institute of the Netherlands Vol. XI, No. 423, (1951).

    Google Scholar 

  8. Rindfleisch, T., Photometric method for lunar topography, Photogrammetric Engineering (32)262–276, (1966).

    Google Scholar 

  9. Horn, B. K. P., Obtaining shape from shading information, in The Psychology of Computer Vision, P.H. Winston (ed.) pp. 115–155, McGraw-Hill, 1975.

    Google Scholar 

  10. Bruss, A. R., The image irradiance equation: its solution and application, AI-TR-623, MIT AI Laboratory, Cambridge, Mass. (1981).

    Google Scholar 

  11. Mackworth, A. K., Interpreting pictures of polyhedral scenes, Artificial Intelligence (4) 121–137, (1973).

    Article  Google Scholar 

  12. Woodham, R. J., Analysing images of curved surfaces, Artificial Intelligence (17)117–140, (1981).

    Article  Google Scholar 

  13. Ikeuchi, K. & B. K. P. Horn, Numerical shape from shading and occluding boundaries, Artificial Intelligence (17)141–184 (1981).

    Article  Google Scholar 

  14. Woodham, R. J., Photometric method for determining surface orientation from multiple images, Optical Engineering (19)139–144, (1980).

    Google Scholar 

  15. Silver, W. M., Determining shape and reflectance using multiple images, SM Thesis, Dept. Electrical Engineering and Computer Science, MIT, Cambridge, Mass., (1980).

    Google Scholar 

  16. Ikeuchi, K., Determining surface orientation of specular surfaces by using the photometric stereo method, IEEE-PAMI (3)661–669, (1981).

    Article  Google Scholar 

  17. Coleman, Jr., E. N. & R. Jain, Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry, CGIP (18)309–328, (1982).

    Google Scholar 

  18. Ikeuchi, K., Reconstruction of 3-d objects using the extended Gaussian image, Proc. IJCAI-81, pp. 595–600, Vancouver, B.C., (1981).

    Google Scholar 

  19. Grimson, W. E. L., From Images to Surfaces, MIT Press, 1981.

    Google Scholar 

  20. Horn, B. K. P. & B. L. Bachman, Using synthetic images to register real images with surface models, CACM (21)914–924, (1978).

    Google Scholar 

  21. Little, J. J., Automatic registration of Landsat MSS images to digital elevation models, Proc. Workshop on Computer Vision; Representation and Control, pp. 178–184, Rindge, New Hampshire, (1982).

    Google Scholar 

  22. Woodham, R. J., Using digital terrain data to model image formation in remote sensing, Proc. SPIE Vol. 238, pp. 361–369, (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woodham, R.J. (1983). Viewer-Centered Intensity Computations. In: Braddick, O.J., Sleigh, A.C. (eds) Physical and Biological Processing of Images. Springer Series in Information Sciences, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68888-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68888-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68890-4

  • Online ISBN: 978-3-642-68888-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics