Advertisement

Biophysics pp 316-371 | Cite as

Energetic and Statistical Relations

  • Friedrich Dörr
  • Peter Schuster
  • Gernot Renger
Chapter
  • 433 Downloads

Abstract

A living cell can be considered a physicochemical system. Disregarding its initial development, it exists in a dynamic “steady state” depending on conditions imposed by the environment. Life is bound to a high spatial order of molecular structures, and to a high temporal order, in the sense of a well-defined coordination of physical and chemical processes, such as transport of matter and energy, and sequences of catalyzed reactions. There is no experience suggesting other principles being active in living systems beyond the well-known basic laws of physics: the quantum mechanics of atoms and molecules, and the conservation laws.

Keywords

Free Energy Respiratory Chain Entropy Production Flavin Adenine Dinucleotide Biological Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. Benson, S.W., Thermochemical Kinetics (2nd edn.). New York etc.: John Wiley and Sons 1976Google Scholar
  2. Everdell, M.H.: Statistical Mechanics and its Chemical Applications. London, New York, San Francisco: Academic Press 1975Google Scholar
  3. Hill, T.L.: Thermodynamics for Chemists and Biologists. Reading, Mass.: Addison-Wesley 1968.Google Scholar
  4. Hill, T.L.: An Introduction to Statistical Thermodynamics. Reading, Mass., London: Addison-Wesley 1960Google Scholar
  5. Klotz, I.M., Rosenberg, R.M.: Chemical Thermodynamics (3rd Edn.) Reading, Mass.: The Benjamin/Cunnings Publ. Compy. 1974.Google Scholar
  6. Laidler, K.J.: Chemical Kinetics (2nd edn.). London, etc.: MacGraw Hill 1965.Google Scholar
  7. Lehninger, A.L.: Bioenergetics. New York, Amsterdam: W.A. Benjamin 1965.Google Scholar
  8. Bartlett, M.S.: An introduction to stochastic processes, 3rd ed. Cambridge (U.K.): Cambridge University Press 1978zbMATHGoogle Scholar
  9. Eigen, M.: Naturwissenschaften 58, 465 (1971).ADSCrossRefGoogle Scholar
  10. Eigen, M., DeMaeyer, L.C.M.: Theoretical basis of relaxation spectrometry. In: Weissberger, A. (ed.): Techniques of chemistry, Vol. VI, Part II: Investigation of rates and mechanisms of reactions, Hammes, G.G. (ed.), 3rd ed., pp. 63–146. New York: Wiley-Interscience 1974.Google Scholar
  11. Glansdorff, P., Prigogine, I.: Physica 20, 773 (1954).ADSzbMATHCrossRefGoogle Scholar
  12. Hess, B., Boiteux, A.: Oscillatory phenomena in biochemistry. Ann. Rev. Biochem. 40, 237 (1971)CrossRefGoogle Scholar
  13. McQuarrie, D. A.: Stochastic approach to chemical kinetics. London: Methuen 1967.Google Scholar
  14. Neumann, E.: Angew. Chemie 85, 430, Internat. Ed. 21, 356 (1973).CrossRefGoogle Scholar
  15. Prigogine, I.: Physica 25, 272 (1949).MathSciNetADSCrossRefGoogle Scholar
  16. Rössler, O.E., Wegmann, K.: Nature 172, 89 (1978).CrossRefGoogle Scholar
  17. Schneider, F.W., Neuser, D., Heinrichs, M.: Hysteric behaviour in poly(A)-poly(U) synthesis in a stirred flow reactor. In: Balaban, M. (ed.): Molecular mechanisms of biological recognition, pp. 241–252. Amsterdam: Elsevier-North-Holland Biochemical Press 1979.Google Scholar
  18. Showalter, K, Noyes, R.M., Bar-Eli, K.: J. Chem. Phys. 69, 2514 (1978).ADSCrossRefGoogle Scholar
  19. Tyson, J.J.: The Belousov-Zhabotinski reaction. In: Lecture Notes in Biomathematics, Vol. 10. Berlin-Heidelberg, New York: SpringerGoogle Scholar
  20. Tyson, J.J.: J. Math. Biol. 5, 351 (1978).MathSciNetzbMATHGoogle Scholar
  21. Winfree, A.T.: Rotating chemical reactions. Scientific American 140, (6), 82 (1974).CrossRefGoogle Scholar
  22. Winfree, A.T.: The geometry of biological time. In: Lecture Notes in Biomathematics, Vol. 8. Berlin, Heidelberg, New York: Springer 1980.Google Scholar
  23. Prigogine, I.: From Being to Becoming — Time and Complexity in Physical Sciences. Freeman and Co., San Francisco 1979.Google Scholar
  24. Denbigh, K.G.: The Thermodynamics of the steady state. Methuen, London 1951.Google Scholar
  25. DeGroot, S.R., Mazur, P.: Non-equilibrium thermodynamics North Holland, Amsterdam 1962.Google Scholar
  26. Katchalsky, A., Curran, P.F.: Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge (Mass.) 1967.Google Scholar
  27. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London 1971.zbMATHGoogle Scholar
  28. Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems, Wiley-Interscience, New York 1977.Google Scholar
  29. Zeeman, E.C.: Catastrophe Theory, Scientific American 234 (4), 65 (1976).CrossRefGoogle Scholar
  30. Thom, R.: Structural Stability and Morphogenesis, W. A. Benjamin, Inc., New York (1975).zbMATHGoogle Scholar
  31. Haken, H.: Synergetics — an Introduction, Springer Verlag, Berlin 1977.zbMATHGoogle Scholar
  32. Haken, H., ed.: Dynamics of Synergetic Systems. Springer Verlag Berlin 1980zbMATHGoogle Scholar
  33. Lehninger, A.L.: Bioengenetics, 2nd ed. New York: Benjamin 1971.Google Scholar
  34. Morowitz, H.J.: Foundations of bioenergetics. New York, San Francisco, London: Academic Press 1978.Google Scholar
  35. Nicolis, G., Prigogine, I.: Self organization in nonequilibrium systems. New York, London, Sidney, Toronto: John Wiley 1977.zbMATHGoogle Scholar
  36. Azzone, G.F., Garafoli, E., Lehninger, A.L., Quagliariello, E., Siliprandi, N. (eds.): Biochemistry and biophysics of mitochondrial membranes. London, New York: Academic Press 1972.Google Scholar
  37. Azzone, G.F., Ernster, L., Papa, S., Quagliariello, E., Sinipaldi, N. (eds.): Mechanisms in bioenergetics. London, New York: Academic Press 1973.Google Scholar
  38. Ernster, L., Estabrook, R.W., Slater, E.C. (eds.): Dynamics of energy transducing membranes. Amsterdam, New York, London: Elsevier 1974.Google Scholar
  39. Green, D.E. (eds.): The mechanism of energy transduction in biological systems, Vol.227. New York: Academy of Sciences 1974.Google Scholar
  40. Schäfer, G., Klingenberg, M. (eds.): Energy conversion in biological membranes. Berlin, Heidelberg, New York: Springer 1978.Google Scholar
  41. Van Dam, K., Van Gelder, B.F. (eds.): Structure and function of energy transducing membranes. Amsterdam, Oxford, New York: Elsevier 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Friedrich Dörr
  • Peter Schuster
  • Gernot Renger

There are no affiliations available

Personalised recommendations